Читаем Свет в море полностью

Рассмотрим еще один пример. Допустим, предмет, который мы наблюдаем под водой, окрашен очень темной краской, имеющей коэффициент яркости 0,02, т. е. равен коэффициенту яркости моря. Следовательно, контраст в данном случае равен нулю и предмет нам не будет виден. А если этот предмет — подводная лодка, то выходит, что создание «лодки-невидимки» вполне реальная вещь? При всей привлекательности подобной идеи, ее осуществление возможно только в научно-фантастических романах. Не надо забывать о том, что кроме яркостного контраста существуют и цветовой. Другими словами, для того, чтобы создать «лодку-невидимку», надо ее не просто окрасить краской, коэффициент яркости которой будет равен коэффициенту яркости моря, но соблюсти еще одно условие. Спектральный состав этой краски должен абсолютно точно соответствовать спектральному составу света, идущего из глубин моря к его поверхности. Именно при этих условиях не только яркостный, но и цветовой контраст будет отсутствовать. Надо сказать, что сложность изготовления такой темной краски да еще требуемого спектрального состава превосходит современные технические возможности. Кроме того, как известно, кривые спектральных коэффициентов яркости у разных морей различны. Допустим все же, что когда-нибудь удастся изготовить краску, удовлетворяющую всем требованиям. Будет ли это означать, что окрашенные ею предметы станут полностью невидимыми в воде, т. е. будут абсолютно замаскированы? Отнюдь нет.

Дело в том, что коэффициент яркости моря беспрерывно меняется и эти, даже небольшие, изменения скажутся на величине контраста. Поэтому абсолютно замаскировать предмет, находящийся под водой, физически невозможно. Речь может идти только о создании такой окраски, которая максимально затрудняет визуальное обнаружение предмета, т. е. о максимально возможном приближении контраста к нулевому значению. Пожалуй, лучшим мастером маскировки является природа. Большинство обитателей моря наделено способностью приспосабливать свою окраску к фону (рис. 54). Естественно, и человек старается не отставать от природы. Подводные лодки всех флотов мира в целях маскировки, как правило, окрашивают краской с коэффициентом яркости, приближающимся, насколько это возможно, к спектральному коэффициенту яркости моря.

Все наши рассуждения о контрасте относились к тому случаю, когда наблюдатель находился в непосредственной близости от рассматриваемого объекта, т. е. тот контраст, который он наблюдал, был действительным. По мере удаления от объекта контраст все более и более ослабевает, т. е. наблюдатель, находящийся под водой на некотором расстоянии от объекта, будет оценивать не действительное, а видимое им различие в яркости предмета и фона, или видимый контраст. Это изменение величины контраста имеет очень большое значение для видения под водой. Экспериментально доказано, что при горизонтальном наблюдении изменение действительного контраста происходит по закону Бугера: КВ = Кд∙10-εz, где Кв — видимый контраст; Кд — действительный контраст; z — расстояние от наблюдателя до предмета; ε — показатель ослабления излучения, направленного от предмета в глаз наблюдателя.

Рис. 54. Камбала меняет окраску


Условия наблюдения в воде тем и отличаются от наблюдений в воздухе, что показатель ослабления морской воды в сотни раз превышает показатель ослабления воздуха. Рассеяние света водой приводит не только к ослаблению прямого луча, идущего от предмета к наблюдателю, но создает между ними своеобразную световую дымку, вуалирующую рассматриваемый объект и затрудняющую его видение.

Эта дымка вызывает очень большие трудности при работе под водой с искусственными источниками света. Казалось бы, чем более мощным прожектором освещен предмет под водой, тем лучше он будет виден, но это далеко не так. Увеличение мощности прожектора хотя и улучшает освещенность поверхности предмета, но одновременно с этим приводит к повышению интенсивности дымки. Поэтому при различных работах под водой используют прожекторы мощностью 1–3 квт, причем стараются приблизить источник света к рассматриваемому объекту. Кроме того, условия видимости улучшаются, если объект освещается как бы со стороны, т. е. угол между линией визирования и прожекторным пучком достаточно велик. Наиболее неблагоприятными будут условия наблюдения вдоль прожекторного пучка. В этом случае яркость дымки максимальная.

На каком же расстоянии под водой вообще можно увидеть сравнительно большой предмет, освещенный прожектором?

В широко известном романе Жюля Верна «Двадцать тысяч лье под водой» есть следующие строки: «…чтобы ориентироваться в пути, необходим свет, который рассеивал бы тьму.

…Позади рубки помещается мощный электрический рефлектор, который освещает море на расстоянии полмили»[29].

Перейти на страницу:

Похожие книги

Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы

Как зародилась и по каким законам развивалась жизнь на нашей планете? Что привело к формированию многоклеточных организмов? Как возникают и чем обусловлены мутации, приводящие к изменениям форм жизни? Социологические исследования показывают, что в поисках ответов на эти краеугольные вопросы люди сегодня все реже обращаются к данным науки, предпочитая довольствоваться поверхностными и зачастую неверными объяснениями, которые предлагают телевидение и желтая пресса. Книга доктора биологических наук, известного палеонтолога и популяризатора науки Александра Маркова — попытка преодолеть барьер взаимного непонимания между серьезными исследователями и широким читателем. «Рождение сложности» — это одновременно захватывающий рассказ о том, что происходит сегодня на переднем крае биологической науки, и в то же время — серьезная попытка обобщить и систематизировать знания, накопленные человечеством в этой области. Увлекательная и популярная книга Александра Маркова в то же время содержит сведения, которые могут заинтересовать не только широкого читателя, но и специалистов.

Александр Владимирович Марков

Научная литература
Глаза Сфинкса
Глаза Сфинкса

Знают ли туристы, что в Египте под песками близ Саккары покоятся миллионы мумий всевозможных животных? Под землей скрывается настоящий Ноев ковчег, который еще предстоит открыть! Что побудило древних египтян забальзамировать миллионы птиц и сотни тысяч крокодилов? Эрих фон Деникен изучил древние документы, в которых сообщается, что раньше на Земле жили «чудесные существа многих типов и отличные друг от друга». Порождены ли все эти существа человеческой фантазией — или на нашей планете действительно некогда жили все эти монстры? Да, жили — утверждает Деникен в своей захватывающей книге. Какой корифей генной инженерии придумал их и создал? Остроумно соединяя предания с научными данными, писатель и исследователь уводит нас в особый мир, где реальность оказывается интереснее, чем вымысел.DIE AUGEN DER SPHINX by Erich von Deniken© 1989 by C. Bertelsmann Verlag, Munchen a division of Verlagsgruppe Random House GmbHИсключительное право публикации книги на русском языке принадлежит издательству «София»Перев. с англ. — К.: «София»© «София», 2003

Петр Немировский , Эрих фон Дэникен

История / Научная литература / Проза / Роман / Современная проза / Образование и наука