Читаем Свет в море полностью

Как же избавиться от столь вредного в этом случае преломления световых лучей? Наиболее радикальный способ решить проблему — заполнить водой внутренность фотографической камеры, конечно, не обычного фотоаппарата — ведь стеклянная оптика такого объектива не сможет работать в воде. Показатели преломления воды и стекла отличаются слишком незначительно, и на снимке запечатлевалась бы примерно такая же картина, какую видит в воде ныряльщик без подводных очков. Для практического осуществления этой идеи следует воспользоваться наипростейшей камерой-обскурой с просверленной в металлической пластинке дырочкой вместо объектива. Если все пространство между отверстием и светочувствительной пластинкой, заполнить водой, лучи света, попадающие на пластинку, не будут испытывать никакого преломления.

Хотя с помощью такого устройства можно получать вполне удовлетворительные снимки подводного мира, возможности этой примитивной фотокамеры, конечно, сильно ограничены. А нет ли какого-нибудь другого способа избавиться от преломления лучей? Оказывается, есть. Если использовать систему со сферическим иллюминатором и оптический центр объектива поместить в центре сферы, то большинство лучей, попадающих в объектив и создающих изображение предмета на фотопленке, будет падать на иллюминатор перпендикулярно к его сферической поверхности. Такой луч, как известно, проходит через стекло не преломляясь (ведь если угол падения луча равен 0°, то и угол преломления также окажется равным 0°).

Сферический иллюминатор обладает еще одним преимуществом перед плоским — большей механической прочностью, а это особенно важно для съемок на больших глубинах, где сила давления воды на стекло иллюминатора может достигнуть нескольких тонн.

При использовании сферического иллюминатора оптический центр объектива должен находиться точно в центре сферы. Малейшее перемещение объектива относительно иллюминатора вызывает значительные искажения для лучей, падающих под большим углом.

Поскольку смещение объектива предотвратить полностью невозможно (хотя бы вследствие температурных деформаций), нужно искать, способ избавиться от этих искажений. Американский оптик Е. Торндайк предложил использовать для этого корректирующую линзу.

Для уничтожения хроматических аберраций применяют светофильтры, пропускающие лишь участок спектра, близкий к спектральной чувствительности черно-белой пленки.

Широкое распространение получили оптические системы для подводной фотографии, разработанные известным французским гидрооптиком А. А. Ивановым (рис. 60). Насадки, выполненные по его схеме, позволяют добиться хорошего качества изображения по всему кадру при достаточно широком угловом поле зрения системы. Центровка объектива относительно насадки не требует высокой точности и допускает небольшие смещения объектива вдоль оптической оси и в стороны от нее.

Отличные качества в эксплуатации показывают советские фотообъективы для подводной съемки — «Гидроруссары». Несмотря на большое угловое поле зрения этих объективов, при подводных съемках через плоский иллюминатор они практически не дают искажений. Идея оптической схемы принадлежит ленинградскому оптику профессору М. М. Русинову. Суть ее заключается в том, что система вода — плоский иллюминатор служит как бы одной из линз, а сам объектив рассчитан на исправление ее искажений. Большое достоинство схемы — свободное расположение объектива относительно плоскости иллюминатора.

Рис. 60. Оптическая система А. А. Иванова

1 — иллюминатор — отрицательная линза; А' В' — изображение объекта; 2 — компенсирующая положительная линза; 3 — объектив; АБ — фотографируемый подводный объект;


Дальность фотографирования зависит прежде всего от дальности видимости предметов в воде. Последняя, как известно, определяется несколькими факторами: освещенностью предмета, ослаблением водой его видимой яркости, размытием контуров предмета световой дымкой, вызванной рассеянием.

Возможность фотосъемки при естественном освещении сильно ограничена глубиной. В прозрачных водах при ярком солнечном свете глубина, на которой еще проводят фотосъемку, достигает нескольких десятков метров, в мутных водах уже на очень небольшой глубине нельзя определить, где находится освещенная солнцем поверхность моря.

Чтобы увеличить освещенность фотографируемых объектов, применяют искусственное освещение.

Перейти на страницу:

Похожие книги

Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы

Как зародилась и по каким законам развивалась жизнь на нашей планете? Что привело к формированию многоклеточных организмов? Как возникают и чем обусловлены мутации, приводящие к изменениям форм жизни? Социологические исследования показывают, что в поисках ответов на эти краеугольные вопросы люди сегодня все реже обращаются к данным науки, предпочитая довольствоваться поверхностными и зачастую неверными объяснениями, которые предлагают телевидение и желтая пресса. Книга доктора биологических наук, известного палеонтолога и популяризатора науки Александра Маркова — попытка преодолеть барьер взаимного непонимания между серьезными исследователями и широким читателем. «Рождение сложности» — это одновременно захватывающий рассказ о том, что происходит сегодня на переднем крае биологической науки, и в то же время — серьезная попытка обобщить и систематизировать знания, накопленные человечеством в этой области. Увлекательная и популярная книга Александра Маркова в то же время содержит сведения, которые могут заинтересовать не только широкого читателя, но и специалистов.

Александр Владимирович Марков

Научная литература
Глаза Сфинкса
Глаза Сфинкса

Знают ли туристы, что в Египте под песками близ Саккары покоятся миллионы мумий всевозможных животных? Под землей скрывается настоящий Ноев ковчег, который еще предстоит открыть! Что побудило древних египтян забальзамировать миллионы птиц и сотни тысяч крокодилов? Эрих фон Деникен изучил древние документы, в которых сообщается, что раньше на Земле жили «чудесные существа многих типов и отличные друг от друга». Порождены ли все эти существа человеческой фантазией — или на нашей планете действительно некогда жили все эти монстры? Да, жили — утверждает Деникен в своей захватывающей книге. Какой корифей генной инженерии придумал их и создал? Остроумно соединяя предания с научными данными, писатель и исследователь уводит нас в особый мир, где реальность оказывается интереснее, чем вымысел.DIE AUGEN DER SPHINX by Erich von Deniken© 1989 by C. Bertelsmann Verlag, Munchen a division of Verlagsgruppe Random House GmbHИсключительное право публикации книги на русском языке принадлежит издательству «София»Перев. с англ. — К.: «София»© «София», 2003

Петр Немировский , Эрих фон Дэникен

История / Научная литература / Проза / Роман / Современная проза / Образование и наука