Говорят, что старая теория умирает вместе с последними критиками новой. Так и случилось. Сейчас теорию динамичной, расширяющейся Вселенной полностью принимают все ученые, несмотря на то, что разгадать тайну Большого взрыва нам лишь предстоит.
Тысячелетиями люди могли смотреть на небо только невооруженным глазом. Позже, начиная с XVII века, им помогали в этом оптические телескопы. Но девяносто лет назад, с распространением совершенно новой методики, произошла революция в изучении космоса. Когда в 1932 году Карл Гуте Янский открыл космическое радиоизлучение, мы мгновенно увидели всю Вселенную в совершенно ином свете – буквально ином, потому что мы впервые использовали для наблюдений не видимый свет, а свет из другого диапазона электромагнитного спектра. Для астрономов это означало, что они вступают на абсолютно неизведанную территорию, к которой еще нужно было привыкнуть. Вначале некоторые воротили от нее носы, и потребовалось некоторое время, чтобы новая дисциплина – радиоастрономия – нашла свое место в рамках более широкой науки – астрономии, а ее инструменты стали называться телескопами, но уже не оптическими, а радиотелескопами. Компоненты оптических телескопов, с помощью которых формируется изображение, обычно изготавливаются из различных видов стекла, а радиотелескопы изготавливаются из стали.
Сегодня мы регистрируем космическое излучение во всем спектре электромагнитных волн, используя для этой цели радио-, инфракрасные, оптические, рентгеновские и гамма-телескопы. Мы принимаем радиоволны с частотой 0,01 ГГц, у которых длина волны сравнима с размером дома. Или гамма-лучи с частотой 100 миллиардов ГГц, с длиной волны в 100 миллионов раз меньше размера атома. Один гигагерц равен одному миллиарду колебаний в секунду – это тот тип излучения, который мы используем в
Прорыв в новой области астрономии произошел после Второй мировой войны, и это не было случайностью: военные действия в воздухе обусловили развитие радаров. Помимо очень многого плохого эта смертоносная война дала человечеству и кое‐что хорошее: помогла создать необходимую технологию (хотя при всей ценности радиоастрономии мы никогда не должны забывать о ее печальном происхождении). После войны большое количество радиоантенн, тарелок-приемников и передатчиков оказались ненужными, и астрономы выстроились за ними в очередь.
В последующие годы в исследованиях использовались в основном гигантские радиоантенны, которые когда‐то создали инженеры для радиолокационных станций. В Англии группа бывших солдат Королевских ВВС под руководством Бернарда Ловелла начала строительство гигантского телескопа диаметром 76 метров в Астрофизическом центре Джодрелл-Бэнк. Из-за ошибки в расчетах его размеры оказались совершенно неподходящими для выполнения первоначально поставленных задач. Проект начал испытывать финансовые трудности, и Ловелл испугался, что его отправят в тюрьму. Но запуск первого советского спутника в 1957 году спас телескоп, поскольку группа, обслуживающая его, оказалась единственной во всей Англии, способной принять и расшифровать радиосигналы со спутника. (Конечно, это удалось сделать не с помощью гигантского радиотелескопа, а с помощью простой антенны[92]
.)Голландцы тоже принялись исследовать небо в этом новом диапазоне электромагнитного спектра. Сначала они работали на немецком радиолокационном оборудовании, а затем построили на окраине города Двингело свой 25‐метровый телескоп, используемый для измерения излучения водорода с длиной волны 21 сантиметр, возможность наблюдения которого предсказал Хендрик ван де Хюлст.
Радиотарелка диаметром 64 метра, построенная в Австралии недалеко от небольшого городка Паркс в Новом Южном Уэльсе, вошла в историю благодаря невероятным усилиям ученых, первыми наладившими трансляцию по телевидению кадров высадки на Луну экипажа “Аполлона-11”.