Читаем Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных полностью

В этом примере каждая строка представляет продукт, а столбцы содержат информацию о необходимом количестве ресурсов 1 и 2 для его производства, а также о стоимости.

Цель – минимизировать общую стоимость производства продуктов, учитывая ограничения на количество доступных ресурсов. Эти данные могут быть использованы для создания математической модели, которая оптимизирует распределение ресурсов и находит наилучшее решение для данной задачи.

Прогнозирование временных рядов – анализ и предсказание значений переменных, измеряемых во времени.

Временные ряды являются подтипом анализа табличных данных, который фокусируется на изучении данных, собранных в различные моменты времени и представленных в хронологическом порядке. Временные ряды обычно используются для анализа изменений и тенденций в данных, прогнозирования будущих значений, выявления сезонности и аномалий.

Основная особенность временных рядов заключается в том, что данные имеют временную зависимость. Это означает, что значение признака в определенный момент времени может зависеть от его значений в предыдущие моменты времени. При анализе временных рядов используются специализированные методы и модели, которые учитывают эту временную зависимость.

Анализ временных рядов применяется в самых разных областях, таких как финансы (прогнозирование цен акций и обменных курсов), экономика (прогнозирование ВВП, инфляции), метеорология (прогнозирование погоды), здравоохранение (предсказание эпидемий) и многих других.

Вот пример табличных данных, используемых для анализа временных рядов в экономике:

В этом примере каждая строка представляет год, а столбцы содержат информацию о количестве населения, ВВП, инфляции и безработице в соответствующем году. Эти данные могут быть использованы для анализа тенденций и прогнозирования будущих значений этих показателей. Например, на основе этих данных можно построить модель машинного обучения для прогнозирования ВВП на следующий год на основе количества населения и предыдущих значений ВВП, инфляции и безработицы.

Обработка естественного языка (NLP) – анализ и понимание текстовых данных в табличной форме. Примеры: анализ тональности текста, извлечение ключевых слов или автоматическая категоризация текстов.

В этом примере каждая строка представляет собой отзыв на продукт, содержащий его текст и тональность (положительную или отрицательную). Эти данные могут использоваться для анализа качества продукта и выявления проблем, которые нужно решить. Они также могут использоваться для создания модели машинного обучения, которая может автоматически классифицировать тональность отзывов на продукт.

Анализ табличных данных с помощью машинного обучения может быть применен в широком спектре отраслей и сфер, таких как финансы, здравоохранение, розничная торговля, логистика, маркетинг, образование и многих других.

<p>Этапы типовых проектов по машинному обучению</p>

Внедрение проектов машинного обучения может быть сложным процессом, требующим знаний и опыта, а также взаимодействия между различными командами и отделами. Обычно для внедрения таких проектов используется методология, состоящая из нескольких этапов, которая гарантирует эффективность и успешность проекта.

Определение проблемы и целей проекта:

На этом этапе команда определяет конкретные проблемы, которые должны быть решены с помощью машинного обучения, а также формулирует цели и ожидаемые результаты проекта.

Цели:

Определить проблемы, которые должны быть решены с помощью машинного обучения

Сформулировать цели и ожидаемые результаты проекта

Задачи:

Согласовать проблемы и цели с заинтересованными сторонами

Определить метрики для измерения успеха проекта

Документы:

Техническое задание (Project Charter) с описанием проблемы и целей проекта

Сбор и подготовка данных:

Качество данных является ключевым фактором успеха в машинном обучении. На этом этапе команда собирает и предобрабатывает данные, удаляет пропущенные значения, исправляет ошибки, кодирует категориальные переменные и нормализует числовые признаки.

Цели:

Собрать данные, необходимые для обучения и валидации моделей

Подготовить данные к анализу и использованию в моделях машинного обучения

Задачи:

Очистить данные от ошибок и пропущенных значений

Обработать категориальные и числовые признаки

Документы:

Отчет о сборе и подготовке данных, описывающий процесс и результаты работы с данными

Разработка и обучение моделей:

На этом этапе команда разрабатывает и обучает модели машинного обучения, используя выбранные алгоритмы и подходы. Затем проводится оценка качества моделей, сравнение их результатов и выбор наилучшей модели.

Цели:

Разработать и обучить модели машинного обучения

Оценить качество моделей и выбрать наилучшую

Задачи:

Выбрать подходящие алгоритмы машинного обучения

Обучить модели и провести первичную оценку их качества

Документы:

Перейти на страницу:

Похожие книги

Кровососы. Как самые маленькие хищники планеты стали серыми кардиналами нашей истории
Кровососы. Как самые маленькие хищники планеты стали серыми кардиналами нашей истории

В этой книге предлагается совершенно новый взгляд на историю человечества, в которой единственной, главной и самой мощной силой в определении судьбы многих поколений были… комары. Москиты на протяжении тысячелетий влияли на будущее целых империй и наций, разрушительно действовали на экономику и определяли исход основных войн, в результате которых погибла почти половина человечества. Комары в течение нашего относительно короткого существования отправили на тот свет около 52 миллиардов человек при общем населении 108 миллиардов. Эта книга о величайшем поставщике смерти, которого мы когда-либо знали, это история о правлении комаров в эволюции человечества и его неизгладимом влиянии на наш современный мировой порядок.

Тимоти С. Вайнгард

Медицина / Учебная и научная литература / Образование и наука
Скала
Скала

Сюжет романа «Скала» разворачивается на острове Льюис, далеко от берегов северной Шотландии. Произошло жестокое убийство, похожее на другое, случившееся незадолго до этого в Эдинбурге. Полицейский Фин Маклауд родился на острове, поэтому вести дело поручили именно ему. Оказавшись на месте, Маклауд еще не знает, что ему предстоит раскрыть не только убийство, но и леденящую душу тайну собственного прошлого.Питер Мэй, известный шотландский автор детективов и телесценарист, снимал на Льюисе сериал на гэльском языке и провел там несколько лет. Этот опыт позволил ему придать событиям, описанным в книге, особую достоверность. Картины сурового, мрачного ландшафта, безжалостной погоды, традиционной охоты на птиц погружают читателя в подлинную атмосферу шотландской глубинки.

Б. Б. Хэмел , Елена Филон , Питер Мэй , Рафаэль Камарван , Сергей Сергеевич Эрленеков

Фантастика / Постапокалипсис / Ненаучная фантастика / Учебная и научная литература / Детективы
Зачем мы бежим, или Как догнать свою антилопу. Новый взгляд на эволюцию человека
Зачем мы бежим, или Как догнать свою антилопу. Новый взгляд на эволюцию человека

Бернд Хайнрих – профессор биологии, обладатель мирового рекорда и нескольких рекордов США в марафонских забегах, физиолог, специалист по вопросам терморегуляции и физическим упражнениям. В этой книге он размышляет о спортивном беге как ученый в области естественных наук, рассказывает о своем участии в забеге на 100 километров, положившем начало его карьере в ультрамарафоне, и проводит параллели между человеком и остальным животным миром. Выносливость, интеллект, воля к победе – вот главный девиз бегунов на сверхмарафонские дистанции, способный привести к высочайшим достижениям.«Я утверждаю, что наши способность и страсть к бегу – это наше древнее наследие, сохранившиеся навыки выносливых хищников. Хотя в современном представителе нашего вида они могут быть замаскированы, наш организм все еще готов бегать и/или преследовать воображаемых антилоп. Мы не всегда видим их в действительности, но наше воображение побуждает нас заглядывать далеко за пределы горизонта. Книга служит напоминанием о том, что ключ к пониманию наших эволюционных адаптаций – тех, что делают нас уникальными, – лежит в наблюдении за другими животными и уроках, которые мы из этого извлекаем». (Бернд Хайнрих)

Берндт Хайнрих , Бернд Хайнрих

Научная литература / Учебная и научная литература / Образование и наука
Богатырская Русь
Богатырская Русь

Ведомо ли вам, что подлинные русские богатыри ничуть не похожи на те приукрашенные сусальные образы, что предстают в современных «политкорректных» пересказах, – настоящие богатыри рубили поверженных врагов в куски и делали чаши из человеческих черепов, совершали ритуальные самоубийства и хоронили павших по языческому обряду, сражались против полчищ Атиллы и вели род от древнего скифского корня. Это не «христолюбивое воинство», каким пыталась их представить Церковь, а грозные волхвы войны, титаны, оборотни и полубоги, последние герои арийского пантеона, наследники великой языческой эпохи, когда русские люди на равных спорили с богами, держали на богатырских плечах Небо и ни перед кем не преклоняли колен!Эта книга – новый взгляд на богатырское прошлое Руси, сенсационное переосмысление русских былин. Неопровержимое доказательство их языческого происхождения. Разгадка древних кодов и тайных иносказаний.

Лев Рудольфович Прозоров

Публицистика / Учебная и научная литература