Читаем Таблица Менделеева. Элементы уже близко полностью

Открытие, облегчившее поиски новых химических элементов и выявляющее точное количество пустых клеток Периодической системы, было сделано в 1913 году, когда Генри Мозли предложил метод распределения элементов по их атомным номерам, заменив предложенную Менделеевым сортировку по атомной массе. Закон Мозли демонстрировал, что между уже открытыми лютецием (№71) и танталом (№73) должен находиться ещё один элемент.

Ситуация с семьдесят вторым осложнялась тем, что уже было непонятно, к какому типу металлов он относится, – лютеций проявлял свойства редкоземельного элемента (понятие «лантаноиды» тогда ещё не появилось), а тантал – переходного металла, поэтому мнения разделились – бо`льшая часть химиков считала, что №72 будет очередным редкоземельным металлом, продолжая делить на фракции иттербит или гадолинит и другие редкие земли. Тем не менее, часть исследователей на основании того, что в Периодической системе элемент №72 располагался под клетками типичных переходных металлов – титана и циркония, относили этот элемент к переходным металлам. Знать то, к какому типу относится новый элемент ещё до его открытия, было важно для принятия решения о том, в каких минералах его следует искать и какие подходы для выделения использовать. В конечном итоге в споре химиков решил поучаствовать физик Нильс Бор, который рассмотрел менделеевскую периодичность через призму физики – строения атома. Причина периодичности свойств элементов по Нильсу Бору заключалась в периодическом повторении строения внешнего электронного уровня атома, и электронная конфигурация элемента №72, предложенная Бором, тоже позволяла относить его к переходным металлам.

В 1922 году Дирк Костер и Дьердь Хевеши решили проверить идею Бора и поискать новый элемент в циркониевых рудах (впоследствии нобелевский лауреат Хевеши стал известен ещё и тем, что в 1940 году растворил золотые нобелевские медали немецких физиков Макса фон Лауэ и Джеймса Франка в царской водке, чтобы спрятать их от входивших в столицу Дании немецких войск). Через несколько недель, обнаружив в рентгеновском спектре циркониевой руды линии, предсказанные Мозли для элемента с порядковым номером 72, они выделили его, доказав его сходство с цирконием, подтвердив выкладки Бора и, тем самым, окончательно закрепив теоретические выкладки, и поныне лежащие в основе Периодического закона. Открытие гафния заполнило одну из шести пустых клеток, оставшихся на тот момент в Периодической системе, гафний также стал предпоследним стабильным элементом, обнаруженным в земной коре; последним стал открытый в 1925 году рений.

Гафний нельзя назвать экзотическим для земной коры – при его атомном номере 5,8 грамма гафния на тонну верхнего слоя земной коры – это не так уж и мало. Трудности с его обнаружением были связаны с тем, что гафний не образует своих собственных минералов и руд, сопутствует цирконию, характеризуясь при этом практически таким же атомным и ионным радиусом, что и цирконий, что, естественно, затрудняет его отделение от «металла-хозяина». В наши дни проблема разделения смесей гафний–цирконий решена благодаря методам экстракции и позволяет ежегодно добывать около 70 тонн гафния. Хотя этот элемент и недёшев, затраты на его добычу и извлечение окупаются его уникальными свойствами.

Металлический гафний проявляет исключительную стойкость к коррозии. Более того, гафний легко захватывает нейтроны, что делает его идеальным материалом для изготовления замедляющих стержней ядерных реакторов, в особенности реакторов, работающих в жёстких условиях, подобно наиболее распространённым в атомной энергетике водо-водяным ядерным реакторам.

При сплавлении с металлами гафний даёт суперсплавы, которые способны противостоять высоким температурам, это их свойство эксплуатируется в космической отрасли – из таких суперсплавов делают детали ракет и спускаемых аппаратов. Карбид гафния (HfC) – рекордсмен среди бинарных (состоящих из двух химических элементов) веществ по температуре плавления, она составляет 3890 °C. Смешанный карбид гафния–вольфрама плавится при 4125 °C. Для сравнения: температура плавления металлического вольфрама, считающегося «эталоном» тугоплавкости, – 3422 °C.

<p>73. Тантал</p>

Благодаря танталу мы получили возможность носить мобильные телефоны и смартфоны в карманах джинсов или внутренних карманах пиджаков (или терять их, забывая в неподходящих местах) – благодаря этому элементу мобильные телефоны прошли эволюцию от «кирпичей» 1990-х до современной ультратонкой техники.

Перейти на страницу:

Похожие книги

Алхимия
Алхимия

Основой настоящего издания является переработанное воспроизведение книги Вадима Рабиновича «Алхимия как феномен средневековой культуры», вышедшей в издательстве «Наука» в 1979 году. Ее замысел — реконструировать образ средневековой алхимии в ее еретическом, взрывном противостоянии каноническому средневековью. Разнородный характер этого удивительного явления обязывает исследовать его во всех связях с иными сферами интеллектуальной жизни эпохи. При этом неизбежно проступают черты радикальных исторических преобразований средневековой культуры в ее алхимическом фокусе на пути к культуре Нового времени — науке, искусству, литературе. Книга не устарела и по сей день. В данном издании она существенно обновлена и заново проиллюстрирована. В ней появились новые разделы: «Сыны доктрины» — продолжение алхимических штудий автора и «Под знаком Уробороса» — цензурная история первого издания.Предназначается всем, кого интересует история гуманитарной мысли.

Вадим Львович Рабинович

Культурология / История / Химия / Образование и наука