Начнем с рассмотрения материалов метеонаблюдений. Вероятно, привлекать множество метеостанций и их материалов к анализу нецелесообразно. Дело в том, что картина распределения осадков и температур воздуха в горах достаточно пестрая (особенно за сутки), а наблюдательная сеть в горном районе весьма редкая. Для анализа ограничимся материалами наблюдений по МС Бурмантово (МС Мойва тогда не существовало, и МС Бурмантово, пожалуй, ближайшая в то время действующая МС к месту трагедии, не считая метеостанций западного склона Урала). Температуры воздуха в горах более скоррелированы, потому будем рассматривать лишь их. Сведения по осадкам к анализу не привлекаются ― с высотой режим выпадения осадков меняется достаточно резко, что, конечно, не фиксируется метеостанциями предгорий.
Анализируя график хода температуры воздуха видим четыре потепления (до 0ºС), связанных с прохождением фронтов. Эти периоды, безусловно, сопровождались в горах значительной облачностью, понижением атмосферного давления, выпадением осадков в виде снега. В периоды резких похолоданий в слое снежного покрова устанавливался значительный температурный градиент, который мог вести к развитию глубинной изморози и возникновению неустойчивости снежной толщи.
График хода температуры воздуха представлен на рис. 1. Отметим, что по МС Бурмантово значительные снегопады не отмечались. Однако, сам факт, свидетельствующий о прохождении атмосферных фронтов, безусловно свидетельствует о выпадении осадков в горах. Даже если принять условие, что осадков не было, а метелевый перенос был незначителен, ход температуры воздуха указывает на наличие лавинной опасности.
Отметим также, что существующие методы лавинной опасности не позволяют сказать будет ли лавина или нет точно ― возможно лишь оценить большую или меньшую вероятность лавинной опасности.
Однако сам факт наличия лавинной опасности в горах Северного Урала (тем более учитывая показания очевидцев о наблюдавшихся лавинах) ― налицо.
Итак, лавины зачастую сходят по ослабленному горизонту, А НЕ ПО КОНТАКТУ СВЕЖЕВЫПАВШЕГО СНЕГА СО СТАРЫМ. Процесс перекристаллизации может протекать очень быстро, когда температура воздуха приближается к 0 ºС. Механически слабый слой глубинной изморози не может выдерживать сколько-нибудь значительной нагрузки, что может вести к срыву снежной массы. Кристаллы льда, лежащие под снежной доской, превращаются в процессе перекристаллизации в своеобразную смазку для схода лавины.
Для расчета устойчивости (коэффициента устойчивости) снежного покрова воспользуемся формулой, разработанной в Новосибирском институте инженеров железнодорожного транспорта:
(1)
где
Между значениями коэффициента
Расчет коэффициента сцепления выполнен по соотношению (2):
(2)
где
Поскольку мы не имеем фактических данных о значении коэффициента сцепления и критической толщине лавиноопасного слоя, расчет произведем для нескольких вероятных случаев ― для этого воспользуемся методикой А.Г. Балабуева и Г.К. Сулаквелидзе и номограммой, приводимой в [1] (здесь номограмма не приводится ― фактически она построена по приведенным формулам). Расчетные значения для различных величин коэффициента сцепления
Таблица 1. Возможные характеристики лавиноопасного слоя снежного покрова при α=20º;
Александр Сергеевич Королев , Андрей Владимирович Фёдоров , Иван Всеволодович Кошкин , Иван Кошкин , Коллектив авторов , Михаил Ларионович Михайлов
Фантастика / Приключения / Боевики / Детективы / Сказки народов мира / Исторические приключения / Славянское фэнтези / Фэнтези / Былины, эпопея