Стрелка не посещает все деления на часах, тем не менее по-прежнему имеется повторяющаяся закономерность, которая приводит стрелку назад к 3 часам после перемножения тринадцати троек.
Мы уже сталкивались с похожей математикой в главе 3, когда рассматривали жульнический прием совершенных тасовок в покере. Там мы варьировали число карт в колоде и задавались вопросом, сколько совершенных тасовок необходимо сделать, чтобы карты возвратились к первоначальному расположению. В колоде с 2
Ферма никогда не излагал в полной мере свои рассуждения, поэтому он оставил в виде задания для будущих поколений математиков объяснение своего открытия, что магия всегда срабатывает для часов с простым числом делений. В конечном счете доказательство было найдено Леонардом Эйлером.