Если разместить в пространстве детекторы для определения параметров пучка квантовых микрообъектов, например электронов, то в определенный момент один из данных детекторов пошлет сигнал о поимке электрона. Это означает, что вероятность нахождения отслеживаемой частицы в данный момент в месте расположения детектора тут же превращается в единицу, тогда как вероятность ее появления в любом другом месте и в иное время сразу падает до нуля. Но если бы мы решили уравнение Шрёдингера до срабатывания детектора, то оказалось бы, что волновая функция непрерывно распределена во времени и пространстве.
Рис. 15. Построение природой Мироздания
Большинство современных космологов считают, что судьба нашей Вселенной решалась в первые секунды после Большого взрыва в зависимости от соотношения плотности вещества и энергии. Был достигнут их баланс. Преобладание же энергии на ничтожные доли процента привело бы к быстрому раздуванию и охлаждению, а вещества — к скорой смене расширения на сжатие в точку и, возможно, новому взрыву. Вид нашей Вселенной также определила ядерная сила связи протонов с нейтронами. Если бы она была меньше существующей, атомные ядра просто бы не возникли, а если больше, то еще на стадии первичного синтеза атомных ядер (нуклеосинтеза) практически весь наличный водород превратился бы в гелий — и наша водородная Вселенная имела бы гелиевое лицо. Не совсем понятную, но, несомненно, очень важную роль в эволюции нашего мира играет скрытая «темная энергия» физического вакуума. По неизвестным причинам около семи миллиардов лет назад она сдвинулась от нуля к положительному значению, из-за чего Метагалактика начала ускоренно расширяться.
Рис. 16. Таким видят квантовый мир «струнные» физики-теоретики
Хотите — верьте, хотите — нет, но именно так выглядит пространство-время на самом дальнем «донышке» Мироздания. Конечно, вы увидите такую картину, только если проникнетесь идеями «теоретиков-суперструнщиков», постоянно ищущих новые подходы в теории квантовой гравитации. Поверим им хотя бы на мгновение, и тут же в квантовом масштабе наш мир раскинется необозримой сетью ячеек причудливо изогнутой сетки.
Рис. 17. Пенящееся виртуальное море в океане энергии
Проблема создания квантовой версии общей теории относительности не только в том, что в масштабе атомов и электронов у частиц нет определенных положений и скоростей. В еще более малых масштабах, сопоставимых с длиной Планка (~10-35
м), квантовое пространство-время должно представлять собой кипящую пену, море виртуальных частиц, заполняющее все пустое пространство. В условиях, когда вещество и пространство-время столь изменчивы, уравнения общей теории относительности теряют смысл. Поэтому-то и необходима квантовая теория гравитации.Рис. 18. Суперструнный гравитон
Гравитоны — это закольцованные струны, и потому бранные границы им не помеха. Они могут покидать нашу 3-брану и уходить в другие измерения. Но если переносчики гравитации способны на это, то сила тяготения должна убывать с увеличением расстояния не по ньютоновскому закону обратных квадратов, а гораздо быстрее! То, что мы этого не замечаем, может свидетельствовать о сворачивании (компактификации) дополнительных измерений. В этом случае отклонения от ньютоновской формулы должны проявляться лишь на очень малых дистанциях.
Рис. 19. Сверхдальние галактики, видимые сквозь гравитационные линзы
Рис. 20. Возникновение квантового микроколлапсара