Движение такого рода можно воспроизвести в лабораторных условиях в очень уменьшенных масштабах, взяв вместо воздуха жидкость. При нагревании снизу слоя жидкости в сосуде происходит следующее: пока разница температур между верхним и нижним слоями жидкости невелика, жидкость на макроскопическом уровне остается неподвижной (рис. 4.5). Естественно, жидкость стремится к выравниванию разницы температур посредством теплообмена, но поскольку теплообмен происходит на микроскопическом уровне, непосредственно наблюдать его мы не можем.
Рис. 4.5. Слой жидкости, подогреваемый снизу
При дальнейшем увеличении разницы температур слоев происходит нечто поразительное. Жидкость приходит в движение на макроскопическом уровне, и движение это никоим образом не является хаотическим. Напротив, жидкость движется весьма упорядоченно, образуя при этом цилиндрические ячейки (рис. 4.6). Направление движения жидкости показано на рисунке стрелками: поднявшись к поверхности, жидкость охлаждается и снова опускается вниз.
Рис. 4.6. Цилиндрическое движение жидкости
Самым удивительным в этом цилиндрическом образовании является то, что для организации такого коллективного движения молекулы жидкости должны каким-то образом «договориться» между собой через огромные по их масштабам расстояния, ведь образующиеся в процессе цилиндры в миллиарды раз превосходят размерами сами молекулы. Рассмотрим для начала слой жидкости, находящейся в состоянии покоя. При нагревании расположенная внизу жидкость расширяется и вследствие этого стремится вверх, сверху же при этом давит жидкость более холодная и поэтому более тяжелая. Стремящиеся вверх и вниз массы жидкости оказываются в состоянии равновесия (рис. 4.7). Устойчиво это равновесие или же безразлично? На первый взгляд может показаться, что такое равновесие неустойчиво, так как верхние массы жидкости стремятся опуститься вниз, а нижние подняться вверх, и достаточно небольшого толчка, чтобы вся жидкость пришла в движение. Однако в действительности, как мы сейчас убедимся, ситуация несколько сложнее.
Рис. 4.7. Нагреваемая снизу жидкость в состоянии покоя
Рис. 4.8. Поднимающийся вверх шарик жидкости
Представим себе маленький шарик нагретой жидкости, поднимающийся вверх (рис. 4.8). Встречаясь с более холодными слоями, он будет передавать им свое тепло. Вместе с теплом шарик теряет и «подъемную силу». Кроме того, движение его будет тормозиться из-за трения с окружающей средой. Охлаждение и торможение, таким образом, препятствуют дальнейшему движению шарика, и оно прекращается; жидкость продолжает пребывать в состоянии покоя. Такое положение дел, однако, возможно лишь до тех пор, пока разница температур невелика. Как только жидкость нагреется достаточно сильно, горячие капельки жидкости устремляются вверх, и этот процесс становится основой макроскопического движения. Поразительно, что при этом отдельные нагретые частицы жидкости движутся вверх отнюдь не хаотично — напротив, их движение строго упорядочено. Кажется даже, что всем этим управляет некая внешняя сила; попытаемся разобраться в происходящем, прибегнув к аналогии.
Рис. 4.9. Пловцы в бассейне: неорганизованное движение
Представим себе бассейн, в котором люди плавают из одного конца в другой. Если пловцов очень много, то они будут постоянно оказываться друг у друга на пути (рис. 4.9). Чтобы избежать подобной сутолоки в открытых бассейнах, переполненных желающими искупаться в жаркий летний день, некоторые смотрители запускают пловцов по кругу (рис. 4.10), так что они теперь мешают друг другу гораздо меньше.
Рис. 4.10. Пловцы в бассейне: упорядоченное, организованное движение по кругу