Читаем Тайны природы. Синергетика: учение о взаимодействии полностью

Рис. 6.2. Автокатализ: катализатор соединяет две молекулы таким образом, что получаемые в результате реакции молекулы оказываются идентичны молекуле самого катализатора


В этом процессе уже присутствует нечто, явно схожее по своим свойствам с живой материей, а потому нет ничего удивительного в том, что мы еще столкнемся с этим явлением при рассмотрении теории эволюции. Процессы, подобные описанному, называются автокаталитическими. Что же происходит в ходе химической реакции? При этом нас интересует как микроскопический, так и макроскопический уровень. На микроскопическом уровне вещество состоит из отдельных молекул, а те, в свою очередь, — из атомов. Допустим, некие молекулы двух видов — назовем их вид 1 и вид 2 — вступают в химическую реакцию, в результате которой образуется молекула нового вида (скажем, вида 3). При этом новое вещество может обладать иными химическими и физическими свойствами — например другим цветом. В этом можно легко убедиться, проведя несколько опытов: смешав две жидкости разных цветов — голубую и бесцветную — мы вдруг получаем жидкость красного цвета (рис. 6.3).

Рис. 6.3. Соединение двух различных химических веществ обычно приводит к возникновению гомогенного конечного продукта


Полученная жидкость обычно совершенно равномерно окрашена и не теряет свой цвет со временем. Впрочем, так случается «обычно» — но не всегда; тут мы подбираемся, собственно, к главной теме этой главы. Дело в том, что в XX веке учеными было обнаружено несколько довольно сложных химических реакций, в ходе которых образовывались макроскопические структуры, своими размерами в миллиарды раз превосходящие размеры молекул исходных веществ.

Химические часы

Начнем с самого известного примера: с реакции, открытой русским ученым Б. П. Белоусовым, а позднее систематически исследованной А. М. Жаботинским. Реакция эта весьма сложна, и мы не будем здесь останавливаться на подробностях ее проведения. Нас интересуют прежде всего образующиеся в ходе этой химической реакции структуры. С течением времени цвет жидкости, получаемой в результате описываемой реакции, изменяется с красного на голубой, затем с голубого снова на красный, и т.д. (рис. 6.4).

Рис. 6.4. Периодическая смена цвета жидкости с красного на голубой в реакции Белоусова — Жаботинского


Химическую реакция такого рода можно рассматривать как своеобразные химические часы (ведь часы суть не что иное, как инструмент, непрерывно отмеряющий периоды определенной длительности). Здесь необходимо отметить, что в первоначальном эксперименте вещества, единожды соединившись, основательно и окончательно перемешиваются, а затем полученная однородная жидкость, предоставленная сама себе, демонстрирует периодическое изменение своего цвета. Еще одна подробность: смена цвета жидкости продолжается не бесконечно — спустя некоторое время система приходит в однородное равновесное состояние.

Однако условия эксперимента можно изменить таким образом, что система перестанет быть закрытой: для этого в сосуд, где протекает реакция, необходимо постоянно вводить исходные реагенты и выводить из него конечный продукт. В таких условиях реакция периодической смены цвета оказывается в состоянии непрерывно поддерживать собственное течение.

Обнаружение возможности такого рода флуктуаций исключительно значимо для биологии, ведь все физиологические процессы имеют химическую или электрохимическую природу, а многие из них еще и являются периодическими. Следовательно, стоит разобраться в принципах функционирования химических часов, и мы значительно приблизимся к пониманию таких ритмических процессов в организме, как, например, работа сердца. Здесь нам снова (как и в случае с лазером) придут на помощь концепция параметра порядка и принцип подчинения. При введении в систему исходных реагентов в определенных концентрациях течение реакции становится нестабильным и замещается периодическими изменениями, т. е. флуктуаци-ями, которые играют роль параметра порядка и подчиняют себе отдельные молекулы. Вследствие этих флуктуаций реакция приобретает вынужденно периодический характер, при котором молекулы в едином ритме образуют новые соединения, а затем разрушают их и т.д., так что на макроскопическом уровне мы наблюдаем периодическое изменение цвета жидкости с красного на голубой и обратно. Флуктуационные процессы такого рода можно обработать математически и определить точное значение параметра порядка.

Недавние исследования показали, что связанный с обменом энергией процесс обмена веществ в отдельной клетке протекает в определенном ритме и также является периодическим.

Химические волны и спирали

Перейти на страницу:

Похожие книги