Читаем Тайны природы. Синергетика: учение о взаимодействии полностью

Во всех предыдущих случаях мы уже видели, что существует своеобразная связь между параметром порядка и элементом системы, индивидуумом; рассмотрим еще один пример такой связи. В ряде случаев параметру порядка можно присвоить некоторое простое математическое значение; в нашем примере это будет численность представителей одного биологического вида. Временные изменения этой величины можно проследить по данным относительно численности видов в какой-то определенной местности или в отдельных случаях воспользоваться результатами предварительных расчетов. За всеми этими цифрами скрывается огромное множество индивидуальных судеб, определяемых параметром порядка — общей численностью популяции — с неумолимой твердостью. Если в распоряжении какой-нибудь слаборазвитой страны в определенный период времени окажется меньше средств для поддержания жизнедеятельности, чем необходимо ее жителям, то их численность сократится — параметр порядка уменьшится; однако кого именно постигнет эта ужасная участь, остается неизвестным. Нечто подобное происходит и в политической, и в экономической жизни. Относительно параметра порядка возможны предположения общего характера, но нельзя сделать никаких предсказаний, касающихся отдельных индивидуумов — к этому факту мы еще неоднократно вернемся в дальнейшем.

Глава 9 ФОРМИРОВАНИЕ БИОЛОГИЧЕСКИХ ОРГАНИЗМОВ

Передача наследственной информации

В предыдущей главе мы занимались живой природой в целом и динамикой взаимодействия различных живых организмов; теперь же мы обратимся к живому организму как таковому. Живая природа поражает нас многообразием форм, но отдельные биологические виды отличаются постоянством формы, воспроизводя ее снова и снова в неизменном виде. Это значит, что возникновение формы должно быть подчинено строгим правилам. Но каким, собственно, образом вообще возникает форма, и как становится возможным упорядочивание этого возникновения? Простейшим ответом на эти вопросы будет ссылка на наследственность. Ведь нам прекрасно известно, что телесные — и, несомненно, духовные — свойства и качества передаются по наследству, а значит, должен существовать какой-то материальный носитель этих свойств, какое-то химическое вещество. Химики наградили этот носитель сложным именем «дезоксирибонуклеиновая кислота», сокращаемым обычно до ДНК. Молекула ДНК представляет собой две молекулярные цепочки, закрученные одна вокруг другой в спираль, за что и называется иногда двойной спиралью (рис. 9.1).

Рис. 9.1. Образующие двойную спираль молекулярные цепочки ДНК. Вверху схематически показан продольный разрез, внизу — объемная модель


В каждой цепочке, как в нитке бус, состоящей из разноцветных жемчужин, выстроены друг за другом в порядке, кажущемся совершенно произвольным, химические соединения четырех различных типов (рис. 9.2). Полные названия этих четырех соединений большинству из нас мало что скажут; здесь мы назовем их по первым буквам их кратких названий: А (аденин), Ц (цитозин), Г (гуанин) и Т (тимин). (Сами названия нам больше не понадобятся, поэтому запоминать их не обязательно.) Для усиления аналогии с цветными бусами присвоим каждому типу соединений определенный цвет.

Рис. 9.2. В каждой цепочке элементы молекулы следуют друг за другом, подобно жемчужинам в бусах


Молекула ДНК «воспроизводится» в клетке подобно тому, как на фотографии воспроизводится негатив. При этом посредством определенной химической реакции возникает молекула рибонуклеиновой кислоты (РНК). Каждый отдельный элемент ДНК (А, Ц, Г или Т) переходит при этом в соединение нового типа:

Элементы молекулярной цепочки группируются по три, например: ГАУ, ЦЦУ, ГЦУ, УУУ

Последовательность элементов в группах представляет собой своего рода код, определяющий порядок выстраивания в молекуле белка отдельных аминокислот (рис. 9.3).

Рис. 9.3. Кодоны, или триплеты молекулы РНК


Перейти на страницу:

Похожие книги