Читаем Тайны пространства и времени полностью

В пользу такой точки зрения говорят по меньшей мере два обстоятельства. Во-первых, представление о необратимости времени сформировалось задолго до обнаружения расширения Вселенной, а во-вторых, если бы расширение Вселенной сменилось сжатием, а направление статистических и электродинамических процессов оказалось прежним, наши представления о направлении времени остались бы неизменными.

Но если бы в сжимающейся Вселенной потекли вспять термодинамические и электродинамические процессы, то эти представления, видимо, изменились бы самым коренным образом.

Однако рассуждения рассуждениями, а поскольку существуют хотя бы и не строго обоснованные на уровне всеобщих принципов, но подтвержденные фактическими наблюдениями три различные стрелы времени – между ними должна существовать какая-то связь или хотя бы какая-то корреляция. В том, разумеется, случае, если эти стрелы действительно отражают реальное положение вещей.

В этом направлении идут интенсивные теоретические поиски. Не исключено, что в результате будет найдено единое фундаментальное обоснование однонаправленности времени, а три стрелы времени окажутся его частными проявлениями.

Но может случиться и так, что никакого единого закона подобного рода не существует, а необратимость времени связана со всей совокупностью природных процессов.

Следует упомянуть и о том, что в связи с открытием нарушения Т-инвариантности при распаде Кё-мезона были попытки построить так называемую каонную стрелу времени и установить зависимость между нею и тремя другими стрелами. Однако эти теоретические поиски пока что только начинаются.

Но вернемся к электродинамике и ее уравнениям с запаздывающими и опережающими потенциалами. Обычно в классической электродинамике уравнения с опережающими потенциалами отбрасываются на том основании, что они не имеют физического смысла. Если исходить из того, что причина любого явления не может располагаться в будущем, то эти уравнения описывают процессы, обращенные во времени. Примером такого процесса как раз и может служить сферическая электромагнитная волна, сходящаяся в точку. Но в реальном мире такие процессы не происходят.

В квантовой электродинамике дело обстоит значительно сложнее. Еще в 1945 году Дж. Уилер и Р. Фейнман показали, что если исходить из предположения о том, что действие заряженных частиц друг на друга распространяется со скоростью света, то приходится учитывать как запаздывающие, так и опережающие действия. В противном случае оказался бы нарушенный 3-й закон Ньютона – закон действия и противодействия.

Для примера представьте себе две частицы – два электрических заряда А и В, разделенные расстоянием, равным одному световому часу. Если действие в А начинается в 12 часов, то оно достигнет В в 13 часов. Но, поскольку это действие должно иметь равное противодействие, реакция в В должна начаться в 13 часов и достигнуть А в 12 часов. Но такие «опережающие действия» вступают в явное противоречие, с одной стороны, с принципом причинности, о котором подробнее речь пойдет несколько позже, а с другой – с нашим практическим опытом. В самом деле, если на поведение А в настоящий момент влияет будущее поведение В, то это поведение, которое наступит только через час, уже никаким иным быть не может. Иначе изменилось бы поведение А в данный момент, а этого случиться не может, так как оно уже совершилось. Но это, в свою очередь, означает, что мы никаким способом не могли бы повлиять на будущее поведение В, что заведомо не соответствует действительности…

Впрочем, Уилеру и Фейнману удалось показать, что если А взаимодействует не только с В, но и со всеми остальными частицами бесконечной Вселенной, и если принять, что эта Вселенная – статическая с однородным распределением заряда, то результирующий эффект опережающего действия содержать не будет.

Однако при этом Уилер и Фейнман исходили, как теперь ясно, из неправильной модели Вселенной. В дальнейшем эта проблема подвергалась многократному исследованию, в результате чего связь между фактором расширения Вселенной, то есть космологической стрелой времени и электромагнитной стрелой, сделалась более ощутимой. Но в полной мере этот вопрос не исследован и сегодня.

<p>Еще раз о необратимости</p>

Любопытно, что почти все законы современной физики теоретически не запрещают обращения тех процессов, которые практически являются необратимыми.

Исключение составляют уже упомянутые нами случаи аномального распада Кё-мезона, который интерпретируется как доказательство неинвариантности законов физики элементарных частиц относительно изменения знака направления времени. Но эта интерпретация остается дискуссионной.

Таким образом, следует признать, что нашим необратимым миром почему-то управляют законы, безразличные к направлению течения времени.

Естественно поэтому ожидать, что должен существовать некий более общий фундаментальный закон, определяющий это направление. Каков этот всеобщий закон, нам пока неизвестно. Тем более что и ни в одной ограниченной области физических явлений такие частные законы не сформулированы.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука