Читаем Тайны пространства и времени полностью

Когда в 1930-е годы Поль Дирак с присущим ему теоретическим блеском точно рассчитал спектр излучения атома водорода – системы, состоящей из протона и электрона, то выяснилось, что так называемый второй энергетический уровень, на котором может находиться электрон, – это в действительности два уровня, слившиеся друг с другом.

Через несколько лет американский физик Леон Пастернак, исследуя оптические спектры водорода, в частности, переход электрона со второго уровня на первый, обнаружил, что вопреки расчетам Дирака при этом возникают не одна, а две спектральные линии. Однако этот результат был получен на самом пределе возможностей прибора, с которыми работал Пастернак, и хотя как спектроскопист он пользовался заслуженной известностью, никто не отнесся к его наблюдению всерьез…

Вторая мировая война способствовала развитию радиолокации. Одним из тех, кто имел дело с новой аппаратурой, был американский физик Виллис Лэмб. И когда война окончилась, он решил вернуться к опыту Пастернака. Если второй уровень в самом деле расщепляется на два, рассуждал он, то должен существовать и переход между ними. Но в этом случае, как показывает расчет, соответствующая линия излучения будет лежать в радиодиапазоне. Для проверки этого предположения Лэмб решил воспользоваться списанной радиолокационной аппаратурой, чтобы создать необходимые экспериментальные установки. И когда задуманный эксперимент был осуществлен, Лэмб обнаружил именно то, что и ожидал…

Дирак оказался немного не прав. Он не учел физического эффекта, вызывающего расщепления второго уровня. Знаменитый физик рассматривал систему, состоящую из протона и электрона, – и только. А в реальном мире такой изолированной системы просто не существует – есть протон и электрон, погруженные в физический вакуум. Протон – тяжелая частица, и она колебаниям вакуума не поддается, а электрон под их влиянием сам начинает колебаться. Это и приводит к расщеплению уровня, обнаруженному Лэмбом…

Физики говорят, что еще до войны известный советский физик-теоретик Дмитрий Иванович Блохинцев на семинаре академика Игоря Евгеньевича Тамма дал совершенно правильное объяснение результата опыта Пастернака. К подобному эффекту, утверждал он, способны привести колебания физического вакуума. Но в то время неизбежность «все более странного мира» еще не казалась столь неизбежной. Идея Блохинцева показалась всем настолько необычной, что никто не отнесся к ней с достаточной серьезностью. И соответствующая статья, к сожалению, так и не появилась в печати…

Вообще в конце 1940-х годов физический вакуум для большинства людей, даже близко стоящих к физике, был чем-то прямо-таки «потусторонним».

Но вернемся к явлениям, которые происходят в физическом вакууме и в реальности которых сегодня уже не приходится сомневаться.

Известно, что два разноименных электрических заряда в пустоте притягиваются друг к другу с некоторой силой. Но если их поместить в какую-либо среду, то благодаря ее влиянию сила взаимодействия между зарядами изменится/Например, в воде она ослабевает в 80 раз. Нечто похожее происходит и в физическом вакууме. Если в нем находится, скажем, положительно заряженное ядро, то оно начинает взаимодействовать с виртуальными электронами и позитронами – подтягивает к себе электроны и отталкивает позитроны. Благодаря этому два заряда будут взаимодействовать между собой не совсем по закону Кулона. И это отклонение наблюдается в экспериментах, в частности, в опытах на ускорителях. Например, рассеивание пучка электронов большой энергии на протонах из-за влияния физического вакуума фактически происходит не совсем так, как должно было бы происходить в пустоте. Таким образом, можно считать, что физический вакуум – среда – ничем не «хуже» тех сред, с которыми мы обычно имеем дело. На какую же из известных нам сред он похож – вот в чем вопрос? На металл, полупроводник, диэлектрик, жидкость? Исследования последних лет позволяют считать, что во многих отношениях физический вакуум ведет себя подобно сверхпроводнику…

Сверхпроводимость – чрезвычайно интересное явление. Оказывается, в некоторых металлах при понижений температуры до 23,4 градуса Кельвина, то есть до минус 250 градусов Цельсия, электрическое сопротивление обращается в нуль. Именно в нуль – не становится пренебрежимо малым, а полностью исчезает.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука