На заре своей исследовательской деятельности я хотела выяснить, откуда берется онтогенетическая пластичность. Мне хотелось раскрыть детали этой экстраординарной самоорганизации. У меня не было никаких практических целей. Это было просто страстное желание разобраться, на чем клетки основывают свой выбор. Я чувствовала, что лучше начать с отслеживания судьбы отдельных клеток, с момента их появления и на протяжении всего периода делений, пока они не станут собственно клетками эмбриона (ребенка) или клетками плаценты или не исчезнут в процессе. Я хотела придумать специальную краску, подчеркивающую все захватывающие подробности танца жизни, которые так долго оставались невидимыми.
Глава 3
Раскрашивая клетки
Чтобы проследить судьбу каждой клетки развивающегося эмбриона, я обратилась было к распространенной медузе, дрейфующей в холодных водах западного побережья Северной Америки. Хотя диаметр этой медузы не превышает десяти сантиметров, ее способность к биолюминесценции — самая выдающаяся в Мировом океане.
Потревоженная, она генерирует световые вспышки по краям колокола. Изначально они выглядят как голубые искры, созданные люминесцентным белком экворином. Но мы не видим их, потому что внутри медузы они проникают в белок с маленькой структурой в центре под названием «хромофор», который поглощает синий свет и переходит в возбужденное состояние, а по мере выхода из него светится зеленым. Осаму Симомура из Принстона выделил этот белок в 1960-х, назвав его зеленым флуоресцентным белком (
Сегодня этот белок можно использовать для самых разных целей, например, чтобы отследить распространение вирусных инфекций в организме, понаблюдать за регенерацией поврежденных тканей в организме аксолотля (амфибии) или в подробностях увидеть, как переплетаются нервные пути в мозге мыши. С помощью генетических трюков и флуоресцентных белков можно покрасить сотни нервных клеток в десятки различных оттенков и создать мозговую радугу (
С помощью множества флуоресцентных меток можно представить разные стадии жизни в форме яркой мозаики синего, розового, зеленого и других цветов. Значимость подобных исследований сопоставима с их красотой.
Однако оригинальный белок медузы, выделенный Симомурой, не работал в теплокровном организме. Мне нужен был мощный флуоресцентный маркер, чтобы проследить, как активируются гены в клетках живых эмбрионов млекопитающих по мере развития или установить время рождения отдельных клеток и окончательного решения их судьбы.
GFP начали использовать в качестве маркера еще в 1994 году, когда Мартин Чалфи из Колумбийского университета в Нью-Йорке сообщил, что с помощью флуоресцентного белка можно продемонстрировать активацию гена, за что и разделил Нобелевскую премию с Симомурой [3].
Мне тоже хотелось побаловаться этой светящейся зеленой краской. Это был год, когда Мартин Эванс и я получили стипендию Европейской организации молекулярной биологии, что привело меня в Кембридж, где я могла доработать GFP, чтобы проследить действия генов в живом эмбрионе млекопитающего и в стволовых клетках. Ген GFP можно было встроить в ДНК млекопитающего и тем самым пометить белок флуоресцентным маркером. Если бы клетка использовала ген для производства этого белкового компонента, то под ультрафиолетом, благодаря GFP, она светилась бы зеленым.
В то время меня глубоко интересовало нарушение симметрии, полярность и структурные детали развития эмбриона. Именно поэтому я загорелась концепцией самоорганизации и идеями великого английского математика Алана Тьюринга, который в 1936 году создал теорию алгоритмов, а во Вторую мировую войну взломал код нацистской шифровальной машины Enigma [4]. Тьюринга интересовали узоры, созданные самой природой: он хотел опровергнуть представление о том, что только Бог способен творить чудеса. Мне нравилась его идея, что в природных узорах нет ничего сверхъестественного.
Я знала, что клеткам мышиных и человеческих эмбрионов присуща пластичность в вопросах окончательного превращения в конкретный тип клеток. Я хотела понять базовые механизмы этой пластичности, чтобы посмотреть, соответствуют ли они математическим моделям формирования узоров, предложенных Тьюрингом.
Для этого мне надо было пометить клетки, чтобы несколько дней следить за ними и их потомками в развивающемся мышином эмбрионе. Раньше такого никто не делал, и GFP казался мне идеальным помощником. Но прежде всего мне нужно было заставить его светиться в эмбрионе млекопитающего. Тогда этот подвиг еще никому не удавался, поэтому у меня не было готового решения. И как обычно бывает, когда пытаешься сделать что-то в первый раз, у меня ничего не вышло.