Читаем Техническая подготовка командира взвода ПЗРК 9К38 «Игла» полностью

До выхода ракеты из трубы крылья сложены против часовой стрелки. При выходе из трубы крылья под действием центробежных сил раскрываются и надёжно фиксируются механизмом стопорения.

Оптическая головка самонаведения

Оптическая головка самонаведения 9Э410 предназначена для формирования сигнала управления, обеспечивающего пассивное самонаведение ракеты по методу пропорционального сближения.

ОГС представляет собой оптическое приёмное устройство и решает следующие задачи:

1) пространственная селекция целей;

2) спектральная селекция инфракрасного излучения поражаемых целей, ложных тепловых целей (ЛТЦ), фоновых помех и защита от них;

3) преобразование инфракрасного излучения выбранной для обстрела цели в электрический сигнал ошибки слежения, пропорциональный пространственному рассогласованию оптической оси ОГС и линии визирования «ракета — цель»;

4) захват и автоматическое сопровождение цели оптической осью (сведение ошибки слежения к нулю);

5) формирование сигнала управления ракетой, пропорционального угловой скорости линии визирования (по методу пропорционального сближения).



Рис. 19. Отсек ОГС 9Э410

Решение задачи пространственной селекции целей осуществляется созданием узкого поля зрения ОГС (2°) за счёт применения зеркально-линзовой оптической системы (объектива). Однако узкое поле зрения потребует точного прицеливания и принудительного совмещения оптической оси объектива с линией прицеливания.

Для пространственной селекции оптического излучения объектов выбор угла поля зрения носит характер оптимизации: при очень малом угле затрудняется наведение и сопровождение, а при большом — повышается объём информации, в том числе ложной. Величина угла зависит от отношения фокусного расстояния и диаметра кадра объектива.

Задача спектральной селекции инфракрасного излучения поражаемых целей, ложных тепловых целей (ЛТЦ), фоновых помех и защита от них решается путём избирательного двухканального приёма инфракрасного излучения поражаемых целей и помех.

Физическими основами пассивной оптической локации является то, что все тела, температура которых выше абсолютного нуля, излучают электромагнитные волны в оптическом диапазоне. Оптический диапазон лежит между радио— и рентгеновским излучением и включает в себя:

• инфракрасное излучение с длиной волны λ = 1000–0,78 мкм;

• видимое излучение — λ = 0,78–0,4 мкм;

• ультрафиолетовое излучение — λ = 0,4–0,001 мкм.

При этом также известно, что:

• максимум спектральной интенсивности излучения Солнца, его фоновых отражений достигается при λ = 1 мкм, а ложных тепловых целей (ЛТЦ) — при λ = 2 мкм;

• нагретые элементы сопел реактивных двигателей и выхлопных патрубков поршневых двигателей, а также их выхлопные газовые струи имеют инфракрасное (тепловое) излучение в узком диапазоне длин волн 2,6–6,5 мкм.

При построении приёмных устройств для инфракрасного излучения в объективах создаются входные оптические полосовые фильтры, которые, в принципе, могут быть созданы различными методами: интерференцией, избирательным поглощением, избирательным отражением, избирательным преломлением и поляризацией.

Использование в приёмниках оптических фильтров позволяет:

• выделить из всего потока лучистой энергии только инфракрасное излучение целей и помех;

• образовать в приемном устройстве два спектральных канала: основной (ОК) — поражаемых целей и вспомогательный (ВК) — помех.

Сравнение уровней сигналов в ОК и ВК позволяет выстроить логику селекции и защиты:

ВК/ОК < 1 — цель; ВК/ОК ≈ 1 — фон; ВК/ОК > 1 — ЛТЦ.

Задача преобразования инфракрасного излучения выбранной для обстрела цели в электрический сигнал ошибки слежения, пропорциональный пространственному рассогласованию оптической оси ОГС и линии визирования «ракета — цель» решается следующим образом:

• Оптическая система формирует в фокальной плоскости изображение цели в виде пятна малых размеров (положение пятна в фокальной плоскости однозначно характеризует направление (ε) и величину угла (А) рассогласования оптической оси и линии визирования, т. е. ошибку слежения).

• Модулятор приемного устройства, расположенный в фокальной плоскости, производит сканирование положения пятна и модуляцию потока лучистой энергии по закону ошибки слежения. В качестве модуляторов нашли применение вращающиеся диски — растры с чередующимися прозрачными и непрозрачными участками.



Рис. 20. Принцип формирования изображения цели и ошибки слежения

Перейти на страницу:

Похожие книги

История военно-окружной системы в России. 1862–1918
История военно-окружной системы в России. 1862–1918

В настоящем труде предпринята первая в отечественной исторической науке попытка комплексного анализа более чем пятидесятилетнего опыта военно-окружной организации дореволюционной российской армии – опыта сложного и не прямолинейного. Возникнув в ходе военных реформ Д.А. Милютина, после поражения России в Крымской войне, военные округа стали становым хребтом организации армии мирного времени. На случай войны приграничные округа представляли собой готовые полевые армии, а тыловые становились ресурсной базой воюющей армии, готовя ей людское пополнение и снабжая всем необходимым. До 1917 г. военно-окружная система была испытана несколькими крупномасштабными региональными войнами и одной мировой, потребовавшими максимального напряжения всех людских и материальных возможностей империи. В монографии раскрыты основные этапы создания и эволюции военно-окружной системы, особенности ее функционирования в мирное время и в годы военных испытаний, различие структуры и деятельности внутренних и приграничных округов, непрофильные, прежде всего полицейские функции войск. Дана характеристика командному составу округов на разных этапах их развития. Особое внимание авторы уделили ключевым периодам истории России второй половины XIX – начала XX в. и месту в них военно-окружной системы: времени Великих реформ Александра II, Русско-турецкой войны 1877–1878 гг., Русско-японской войны 1904–1905 гг., Первой мировой войны 1914–1918 гг. и революционных циклов 1905–1907 гг. и 1917 г.

Алексей Юрьевич Безугольный , Валерий Евгеньевич Ковалев , Николай Федорович Ковалевский

Детективы / Военное дело / Военная история / История / Спецслужбы / Cпецслужбы
Стратегическая разведка ГРУ
Стратегическая разведка ГРУ

Самая малоизученная и особая разведка в империи ГРУ - стратегическая. Она выдвинута далеко впереди пограничных застав и ведется, как правило, на территории противника или его союзников.В первой части герои очерков - офицеры-фронтовики, которые прошли войну на "передке", некоторые из них - в качестве полковых и дивизионных разведчиков. А после войны их, героев-орденоносцев, направили в академию, а потом вновь на фронт, только теперь "холодной войны". Они были военными атташе, работали "под крышей" в Европе и на Востоке.Вторая часть повествует о детях войны, о мальчишках, которые мечтали о фронте, но пока обучались в спецшколах, военных училищах, война закончилась. Послужив в войсках, лучшие из них оказались в стратегической разведке. Работали в США, Греции, Швейцарии, на Ближнем Востоке. Леонид Медведко трудился "под крышей" ТАСС в Дамаске, Валерий Калинин под прикрытие"", торгпредовской должности в Афинах, Василий Ловчиков служил в посольств" в Женеве.На их счету завербованные ценные агенты, добытые новейшие секретные образцы военной техники и оружия, материалы под грифом "Топ-секрет". Как добывались эти материалы и образцы, какие уникальные спецоперации были проведены нашими стратегическими разведчиками, и повествуется в книге.

Михаил Ефимович Болтунов

Биографии и Мемуары / Военное дело / История / Военная документалистика / Образование и наука / Документальное