Читаем Технология хранения и обработки больших данных Hadoop полностью

Таким образом, классический Hadoop MapReduce представляет собой один процесс JobTracker и произвольное количество процессов TaskTracker, или по-другому один мастер узел и множество узлов slave.

MapReduce выполняет работу над огромным набором данных, обрабатывая данные и сохраняя их в HDFS таким образом, что извлечение данных производится проще, чем в традиционном хранилище.

Модель MapReduce следует принципам функционального программирования, вследствие чего пользовательские вычисления выполняются как функции map и reduce, обрабатывающие данные в виде пар ключ-значение.

Hadoop предоставляет высокоуровневый программный интерфейс для реализации пользовательских функций map и reduce на различных языках.

Также Hadoop предоставляет инфраструктуру для выполнения заданий MapReduce в виде серий задач map и reduce.

Задачи map вызывают функции map для обработки наборов входных данных.

Затем задачи reduce вызывают функции reduce для обработки промежуточных данных, сгенерированных функциями map, формируя окончательные выходные данные.

Задачи map и reduce выполняются изолированно друг от друга, что обеспечивает параллельность и отказоустойчивость вычислений.

Hadoop версии 1 содержал компоненты HDFS и Map Reduce.

И Hadoop версии 1 разрабатывался только для выполнения заданий MapReduce.

А Hadoop версии 2 уже содержит компоненты HDFS и YARN/Map Reduce версии 2.

В классическом Map Reduce, когда мастер узел перестает работать, тогда все его узлы slave автоматически перестают работать.

И мы должны перезапустить весь кластер и заново начать выполнять работу.

Это единственный сценарий, когда выполнение работы может прерваться, и это создает единственную точку отказа.

Компонент YARN или Yet Another Resource Negotiator решает эту проблему благодаря своей архитектуре.

YARN основывается на концепции нескольких мастер узлов и нескольких подчиненных slave узлов, и если один мастер узел выйдет из строя, тогда другой мастер узел возобновит процесс и продолжит выполнение.

Классический Map Reduce отвечает как за управление ресурсами, так и за обработку данных.

В Hadoop версии 2, YARN разделяет функций управления ресурсами и планирования/мониторинга заданий на отдельные демоны.

YARN – это универсальная платформа для запуска любого распределенного приложения, и здесь Map Reduce – это распределенное приложение, которое работает поверх YARN.

Таким образом, YARN отвечает за управление ресурсами, то есть решает, какая работа будет выполняться и какой системой.

Тогда как Map Reduce является фреймворком программирования, который отвечает за то, как выполнить конкретную работу, используя два компонента mapper и reducer.

YARN отделяет компоненты управления ресурсами от компонентов обработки, и YARN не сводится только к MapReduce.

Диспетчер ресурсов resource manager YARN оптимизирует использование кластера и поддерживает другие рабочие процессы, кроме Map Reduce.

Поэтому здесь мы можем добавлять дополнительные программные модели, такие как обработка графов или итеративное моделирование, которые могут обрабатывать данные, используя те же кластеры и общие ресурсы.

Поверх HDFS и Yarn могут работать множество компонентов, и эта архитектура также развивалась с течением времени.

Давайте посмотрим на историю и посмотрим, как вся эта экосистема Hadoop развивалась и росла со временем.

Как вы можете заметить, у многих из этих приложений смешные имена.

Как мы можем понять весь этот зоопарк, и как мы можем понять, что делает каждое из этих приложений?

Проект Hadoop возник из концепции Google MapReduce и идеи о том, как можно обрабатывать очень большие объемы данных.

Здесь показан стек Google Big Data.

И он начинается с файловой системы Google GFS.

В Google подумали, что будет хорошей идеей использовать большое количество распределенного дешевого хранилища, и попытаться разместить там много данных.

И придумать какой-то фреймворк, который позволил бы обрабатывать все эти данные.

Таким образом, у Google появился свой оригинальный MapReduce, и они хранили и обрабатывали большие объемы данных.

Затем в Google сказали, что это действительно здорово, но нам бы очень хотелось иметь доступ к этим данным и обращаться к ним на языке, похожем на SQL.

Поэтому они создали шлюз MySQL Gateway, чтобы адаптировать данные в кластере MapReduce и иметь возможность запрашивать эти данных.

Затем они поняли, что им нужен специальный язык высокого уровня для доступа к MapReduce в кластере и отправки работы.

Так появился Sawzall.

Затем появился Evenflow и позволил связывать воедино сложные рабочие нагрузки и координировать сервисы и события.

Затем появился Дремель. Dremel – это хранилище и менеджер метаданных, который позволяет управлять данными и обрабатывать очень большой объем неструктурированных данных.

И затем, конечно, вам нужно что-то, чтобы координировать все это между собой.

Так появился Chubby в качестве системы координации, которая управляет всеми продуктами в этой экосистеме, обрабатывающей большие объемы данных.

Здесь показан стек Facebook Big Data.

И мы видим, что стек Facebook выглядит очень похожим.

Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии