Причиной дальнейшего совершенствования светильника стало благоустройство жилища, оно привело к созданию свечи — короткой «лучины», которая долго горит. По сравнению со светильником свеча явно идеальнее — в холодном состоянии воск (в дальнейшем — парафин или стеарин) имеют твердую структуру, поэтому не растекаются и не требуют корпуса, легче хранятся, безопаснее в быту и т.д. Но воск — вещество дорогое, поэтому в домах попроще еще долго горела лампада — кусочек фитиля, плавающий в растопленном жире.
А что, если вместо жира налить в плошку керосин? Керосин, точнее, его пары, прекрасно горят и дают яркий свет — это как раз то, что нужно! Плохо то, что пламя сразу распространяется по всей поверхности плошки и керосин быстро выгорает. Поэтому надо разделить две зоны — место горения и место хранения. А как подавать керосин из второй зоны в первую? Опыт уже есть: тряпка на факеле, пропитанная жиром, обгорает снаружи, постепенно «вытягивая» жир изнутри. Сделаем фитиль из тряпки и опустим его в керосин. Но пламя сбегает по фитилю вниз к плошке. Надо его остановить чем-то негорючим. Как в свече. Так появляется металлическая трубка, внутри которой проходит фитиль. Его нижний конец плавает в керосине, а верхний горит.
Стало лучше, и тут же появилось новое требование: открытая плошка с керосином опасна. Значит, вместо плошки используем закрытый бачок. Но керосин нужно периодически подливать — сделаем из трубки съемную крышку-головку, например, на резьбе. Теперь поставим регулятор и усовершенствуем подачу фитиля: во-первых, он постепенно сгорает, и его надо вытягивать из трубки. Кроме того, от размера вытянутого конца фитиля зависит яркость пламени. Чтобы обезопасить себя от открытого пламени и заодно избавиться от копоти, поставим стекло. Но зачем освещать потолок? Оденем на стекло отражатель — рефлектор — и направим поток света на стол (рис. 3.3).
Дальше можно совершенствовать ряд мелких деталей, но в принципе возможности керосиновой лампы на этом оказались исчерпанными. Ее идеальность по отношению к предыдущим источникам света значительно выше, что проявляется в следующем:
возможность получить гораздо более яркий и чистый источник света — по спектру и без копоти;
возможность простого регулирования количества света;
бóльшая безопасность — открытое пламя прикрыто стеклом, а источник энергии — керосин — плотно закрыт.
Какую же цену заплатило человечество за повышение этого уровня идеальности?
Чтобы получить керосин, нужно разведать залежи нефти, а для этого должна существовать такая наука, как геология. Чтобы извлечь нефть из недр земли, нужно пробурить скважины — для этого пришлось создать нефтедобывающую отрасль промышленности. Чтобы переработать ее на заводе — нефтехимическую. Но выполнить все эти работы можно только при наличии развитой металлургической и металлообрабатывающей отраслей. Эти же отрасли нужны, чтобы изготовить саму лампу — прокатать тонкий металлический лист, разрезать на куски, соединить в герметичный корпус, изготовить остальные детали... Чтобы получить дешевое, тонкое и прочное стекло, необходимы опять-таки химическая и стеклообрабатывающая отрасли со своими специальными машинами. А изготовление машин требует развитой энергетики, транспорта, приборов для измерения и контроля... Все эти отрасли — надсистемы для различных частей керосиновой лампы. Так образуется сложнейшая иерархическая сеть горизонтальных и вертикальных взаимосвязей между различными отраслями производства, учет и анализ которых составляет сущность системного подхода.
Таким образом, из закона повышения уровня идеальности систем вытекает еще одно следствие: повышение этого уровня происходит за счет усложнения надсистемы. Иными словами, упрощая свою жизнь с целью получения максимального количества свободного времени и удовлетворения все возрастающих материальных и духовных потребностей, человечество все больше и больше усложняет производство. Это и есть научно-технический прогресс. Или, если учесть его темпы и последствия, научно-техническая революция...
А как же керосиновая лампа? Некоторое время с керосиновой лампой пыталось конкурировать газовое освещение, но из-за сложности и повышенной опасности не нашло широкого распространения. А затем ее свет померк рядом со свечой Яблочкова (1876), а еще через несколько лет — с лампами накаливания Лодыгина и Эдисона.
Электрическая лампочка, при ее высочайшей идеальности по сравнению с керосиновой лампой, не говоря уже о лампаде и факеле, тоже довольно скоро стала объектом критики. Прежде всего вычислили, что ее коэффициент полезного действия составляет всего несколько процентов, а вся остальная энергия расходуется на нагревание нити накаливания. И второй основной недостаток: спектральный состав излучаемого светового потока сильно отличается от состава спектра естественного солнечного освещения, что вредно отражается на зрении.