Л. — Можно несколько улучшить это положение, применяя полупроводниковые выпрямители (селеновые или даже германиевые). Так как катод отсутствует, можно использовать схему (рис. 119), которую я опять-таки изображаю не вполне ортодоксально. Выпрямитель изображается в виде стрелы, острие которой указывает направление прохождения электронов.
Рис. 119.
Выпрямитель и в этой схеме должен выдерживать обратное пиковое напряжение 2U. Но между концом вторичной обмотки и сердечником максимальное напряжение не превышает U.
Н. — Все это далеко не утешительно. Когда речь идет о таких высоких напряжениях, должны возникнуть настоящие китайские головоломки в отношении изоляции!
Л. — Тогда предпочтительнее прибегнуть к умножителю напряжения.
Н. — Это еще что такое? Ты мне никогда о нем не говорил.
Л. — Принцип работы удвоителя напряжения понять нетрудно (рис. 120). Я тебе предоставляю возможность рассуждений, как мы это обычно делаем, по нашему методу.
Рис. 120.
Н. — Спасибо за честь! Я полагаю, что, например, во время первого полупериода электроны во вторичной обмотке выталкиваются слева направо. Они смогут тогда пройти через верхний выпрямитель и зарядят до напряжения U верхний конденсатор, через нижний же выпрямитель им вход воспрещен.
В следующий полупериод электроны во вторичной обмотке выталкиваются справа налево. Теперь им прегражден путь через верхний выпрямитель. Они смогут тогда пройти через нижний выпрямитель и будут заряжать до напряжения U нижний конденсатор. Но, честное слово, Любознайкин, ты прав! Напряжения обоих конденсаторов складываются, и на выходе получается напряжение 2U. Это поистине гениально!
Л. — Можно применить несколько иную схему (рис. 121), где во время первого полупериода ток проходит через верхний выпрямитель и заряжает до напряжения U конденсатор, включенный последовательно со вторичной обмоткой. Во время следующего полупериода напряжение конденсатора добавляется к напряжению вторичной обмотки, так что выходной конденсатор заряжается через нижний выпрямитель, до 2U вольт.
Рис. 121.
Н. — Все это похоже на какое-то колдовство.
Л. — Соединив каскадом ряд умножителей напряжения в современных устройствах для расщепления атомов, имена которых кончаются на «трон», достигают миллионов вольт.
Н. — Я уже слышал об этих циклотронах и прочих бетатронах. Но вернемся к нашим скромным кинескопам, честолюбие которых измеряется не мегавольтами, а простыми киловольтами.
Л. — Чтобы покончить с классической схемой из трансформатора и выпрямителя, можно отметить, что она далеко не безопасна и практически уже не встречается, по крайней мере в тех случаях, когда речь идет о кинескопах с повышенными напряжениями. Но зато она вполне пригодна для питания кинескопов с электростатическими фокусировкой и отклонением.
Вот, например (рис. 122), схема такого питания, где, начиная с высокого напряжения, выпрямленного и отфильтрованного фильтрующей ячейкой с резистором (С1, R1, C2), все необходимые напряжения получают с помощью делителя напряжения.
Рис. 122.
Н. — Да, я вижу катод, которому задается положительный потенциал по отношению к шасси при помощи переменного резистора R2, включенного последовательно с постоянным резистором R3.Модулятор кинескопа благодаря резистору утечки R10 имеет потенциал шасси и поэтому отрицателен по отношению к аноду. Резистор R2 служит для регулировки средней яркости. Возрастающие потенциалы трех анодов снимаются с цепочки резисторов R4 — R7, благодаря потенциометру R5 можно изменять потенциал второго анода, чтобы регулировать фокусировку пятна. Но я что-то не пойму, для чего служат потенциометры R8 и R9.
Л. — Средние точки этих потенциометров имеют тот же потенциал, что и третий анод (потому что R6 = R7). С помощью движков потенциометров средний потенциал отклоняющих пластин (одной из каждой пары) может быть установлен немного ниже или выше потенциала последнего анода (другой пластины каждой пары). Таким образом, можно регулировать среднее положение пятна как в горизонтальном, так и в вертикальном направлениях, т. е. осуществить центрирование изображения путем перемещения его влево и вправо или вверх и вниз.