Читаем Телевидение?.. Это очень просто! полностью

Н. — Подожди, Любознайкин. Я стараюсь понять. Твоя главная несущая частота, как это можно установить, претерпевает две одновременные модуляции. С одной стороны, она модулируется яркостью. С другой стороны, ее модулирует поднесущая частота, в свою очередь промодулированная сигналом цветности. Это напоминает мне акробатов, которым удается взобраться на плечи одного из своих товарищей, наиболее коренастого, именуемого «несущим». Я вижу, как он поддерживает двух парней, называемых «яркостью» и «поднесущей частотой». Второй из этих парней в свою очередь оказывается «несущим» для трех других акробатов, называемых К, С и 3.

Л. — Изображенная тобой картина очень эффектна…, но достаточно далека от истины. Подумай прежде всего, что нет надобности передавать все три сигнала цветности; достаточно двух — обычно это К и С.

Н. — А что же ты делаешь с 3? Без зеленого невозможно правильно воспроизвести цвета.

Л. — Я совсем не собираюсь изгонять зеленый цвет, цвет надежды. Но его легко восстановить в приемнике, вычитая из сигнала яркости Я сигналы К и С в соответствующей дозировке.

Н. — Это верно. Я должен был бы подумать о том, что 3 является частью Я… Однако как же ты передашь два сигнала К и С, модулируя только одну поднесущую частоту?

ЖОНГЛИРОВАНИЕ ЦВЕТОМ

Л. — Очень просто: модулируя ее последовательно (поочередно) этими двумя сигналами. Это является основным принципом французской системы СЕКAM (SEKAM — сокращение французского названия «sequentiel a memoire» — «последовательно с запоминанием»).

Н. — Но если передавать сигналы поочередно, одного-то будет всегда недоставать.

Л. — Действительно, К передается в течение длительности одной строки, затем С во время следующей строки, потом опять К, вновь С и т. д. Но чтобы иметь одновременно оба сигнала, используют запоминающее устройство.

Н. — Я читал, что в электронных вычислительных машинах используют магнитную «память».

Л. — Здесь речь идет о совершенно другом виде запоминающего устройства. Это стальная пластинка (рис. 139), которая передает колебания с одного конца на другой за 65 мксек, т. е. за время развертывания строки при стандарте четкости в 625 строк. Когда поступает сигнал К, он одновременно направляется на соответствующую пушку кинескопа (с тремя пушками) и на вход линии задержки, где электрические напряжения превращаются в механические колебания. Эти колебания достигают другого конца линии задержки за 64 мксек. А здесь они преобразуются в электрическое напряжение, которое электронный переключатель подведет к пушке К.

Рис. 139.Линия задержки.

Н. — Но в этот момент поднесущая частота доставит сигнал С.

Л. — Вот именно. И он будет одновременно подведен к соответствующей пушке и к входу линии задержки (рис. 140).

Рис. 140.Полупериоды сигналов цветности, передаваемые в системе СЕКAM; благодаря памяти линии задержки, пушки К и С питаются непрерывно соответствующими сигналами, в то время как эти сигналы передаются через строку.

Н. — Есть, готово! Я понял!!! Благодаря «памяти» в виде линии задержки оба сигнала К и С будут существовать одновременно. Едва один из них подлетит на крыльях поднесущей частоты, как второй, поступивший в начале развертывания предыдущей строки на вход линии задержки, также уже готов к действию… Но я не вижу, каким образом твоя система дает возможность решить основную проблему ширины полосы частот.

Л. — Разделение сигналов яркости и цветности дает нам желанное решение. Яркость передают с максимумом деталей, занимая для этого всю имеющуюся ширину полосы частот, ту же, что и для монохроматических передатчиков. Цветность же довольствуется узкой полосой частот (рис. 141).

Рис. 141.Спектр частот передатчика цветного телевидения.

Н. — Это скверно! Четкость цветов в наших изображениях окажется низкой и цвета размытыми. Для чего же тогда….

Л. — Это неважно. Наше зрение обладает весьма любопытным психо-физиологическим свойством. Насколько мы чувствительны к четкости черно-белых изображений, настолько же глаз слабо ощущает отсутствие четкости в цвете.

Н. — Однако я это знал с детства. Когда мне давали альбом с картинками для раскрашивания, я на них размазывал широкие цветные полосы. Это не мешало картинкам сохранять все детали, прекрасно отпечатанные черным цветом.

<p>Беседа девятнадцатая и последняя</p><p>КОГДА СМОТРЯТ БОЛЬШОЕ ИЗОБРАЖЕНИЕ</p>
Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки