Читаем Темные данные. Практическое руководство по принятию правильных решений в мире недостающих данных полностью

Используя элементарную статистику, я могу вычислить вероятность того, что честная монета, подброшенная 10 раз, упадет орлом вверх менее пяти раз: она будет равняться вероятности того, что орел выпадет четыре раза, плюс вероятность того, что он выпадет три раза… и так до вероятности, что орел вообще не выпадет ни разу. Эта общая суммарная вероятность составит 0,377. И все бы хорошо, но для выполнения таких вычислений требуется знать основы биномиального распределения. Однако существует альтернативный способ оценки требуемой вероятности. Мы могли бы подбросить монету 10 раз и подсчитать, сколько раз выпал орел. Правда, одного такого цикла будет явно недостаточно – орел просто выпадет либо больше пяти раз, либо меньше, но это никак не поможет нам узнать вероятность того, что орел выпадет менее пяти раз. Нам потребуется повторить цикл подбрасывания монеты множество раз, чтобы увидеть, какая доля этих циклов дает выпадение менее пяти орлов. Чем больше раз мы повторим цикл, тем более точную оценку мы получим – закон больших чисел, упомянутый в главе 2, прямо говорит об этом. Но такой процесс вскоре может стать довольно утомительным, поэтому вместо того, чтобы тратить свою жизнь на столь бессмысленное занятие, лучше запустить компьютерную симуляцию, в которой случайным образом будут генерироваться 10 значений, каждое из которых равно либо 0, либо 1 (это наши орлы и решки) с вероятностью «выпадения» 1/2. Проделав это снова, и снова, и снова…, мы сможем узнать, какова вероятность выпадения менее пяти орлов.

Я запускал эту симуляцию миллион раз. Доля тех из них, в которых орел выпал менее пяти раз, составляла 0,376, что недалеко от истинного значения вероятности. И обратите внимание на слово «миллион» – симуляция как метод стала по-настоящему возможной лишь с появлением современных компьютеров.

Это, конечно, простейший пример – во-первых, я мог запустить симуляцию на своем ноутбуке, а во-вторых, я знал правильный ответ. Но есть куда более сложные симуляции, например погоды и климата, созданные на основе обширных наборов данных и с применением самых мощных на сегодняшний день компьютеров. В этих симуляциях используются чрезвычайно сложные модели взаимосвязанных процессов, влияющих на климат: атмосферных потоков, океанских течений, солнечного излучения, биологических систем, вулканической активности, загрязнения окружающей среды и прочих воздействий. Реактивный характер таких систем означает, что им присущи специфические проблемы: толкните мяч, и он покатится от вас в направлении приложения силы, но «толкните» сложную систему, и она среагирует неожиданным, а зачастую просто непредсказуемым образом. Понятие хаоса в научном смысле, как, например, в теории хаоса, хорошо соотносится с фундаментальной непредсказуемостью метеорологических систем. Уравнения, описывающие такую сложность, часто не могут быть решены в принципе – получить четкие ответы мешает содержащаяся в них неопределенность. В этом случае на помощь приходит симуляция, которая, многократно генерируя данные из моделей, показывает, как могут вести себя погода и климат. Результаты этих симуляций дают нам представление о диапазоне возможного поведения систем, например о том, как часто будут возникать экстремальные явления, такие как наводнения, ураганы и засухи. Каждый прогон такой симуляции позволяет получить данные, которые могли бы возникнуть, но которые мы на самом деле не наблюдали, и потому они являются темными.

В экономике и финансах используется тот же подход. Современные экономические модели по понятным причинам довольно сложны. Общество состоит из миллионов людей, которые взаимодействуют друг с другом, перемещаются каждый по своему маршруту, организованы в самые разные социальные структуры и подвергаются воздействию внешних сил. Написание и решение математических уравнений, которые позволили бы увидеть, как такие системы должны меняться с течением времени, весьма проблематично. Симуляции на основе сгенерированных данных, которые только могли бы возникнуть, позволяют нам исследовать, как общество будет развиваться в тех или иных условиях, как люди будут реагировать на глобальные изменения, такие как введение торговых тарифов, войны, неблагоприятные погодные условия и т. д.

Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии
Управление знаниями. Как превратить знания в капитал
Управление знаниями. Как превратить знания в капитал

Впервые в отечественной учебной литературе рассматриваются процессы, связанные с управлением знаниями, а также особенности экономики, основанной на знаниях. Раскрываются методы выявления, сохранения и эффективного использования знаний, дается классификация знаний, анализируются их экономические свойства.Подробно освещаются такие темы, как интеллектуальный капитал организации; организационная культура, ориентированная на обмен знаниями; информационный и коммуникационный менеджмент; формирование обучающейся организации.Главы учебника дополнены практическими кейсами, которые отражают картину современной практики управления знаниями как за рубежом, так и в нашей стране.Для слушателей программ МВА, преподавателей, аспирантов, студентов экономических специальностей, а также для тех, кого интересуют проблемы современного бизнеса и развития экономики, основанной на знаниях.Серия «Полный курс МВА» подготовлена издательством «Эксмо» совместно с Московской международной высшей школой бизнеса «МИРБИС» (Институт)

Александр Лукич Гапоненко , Тамара Михайловна Орлова

Экономика / О бизнесе популярно / Финансы и бизнес