Можно, конечно, сказать: «Нет проблем, давайте просто проанализируем 146 270 пациентов, для которых исход известен, и будем делать выводы и прогнозы на основе этой информации». В конце концов, 146 270 тоже немало – в сфере медицины это уже большие данные. Поэтому мы можем смело утверждать, что понимание, основанное на этих данных, будет верным.
Но так ли это на самом деле? Возможно, 19 289 недостающих случаев сильно отличаются от других. В конце концов, их необычность уже в самой неизвестности исхода, так почему же они не могут отличаться и чем-то другим? Как следствие, анализ 146 270 пациентов с известными исходами может быть ошибочным по отношению к общей совокупности пациентов с травмами. Таким образом, действия, предпринимаемые на основе подобного анализа, могут быть в корне неверными и привести к ошибочным прогнозам, ложным предписаниям и несоответствующим режимам лечения с неблагоприятными и даже фатальными последствиями для пациентов.
Давайте возьмем нарочито неправдоподобную, крайнюю ситуацию: предположим, что все 146 270 человек с известными исходами выжили и выздоровели без лечения, а 19 289 с неизвестными исходами умерли в течение двух дней после обращения в больницу. Если бы мы игнорировали последних, то неизбежно пришли бы к выводу, что беспокоиться не о чем – ведь все пациенты с травмами выздоравливают сами собой. Исходя из этого, мы бы просто не стали их лечить, ожидая естественного выздоровления. И вскоре были бы шокированы и озадачены тем фактом, что более 11 % пациентов умерли.
Прежде чем продолжить, я должен вас успокоить – в реальности все обстоит не так уж плохо. Во-первых, приведенный выше сценарий действительно наихудший из возможных, а во-вторых, доктор Миркес и его коллеги являются экспертами по анализу недостающих данных. Они прекрасно осознают опасность и разрабатывают статистические методы решения проблемы, о которых мы поговорим позже. Я привел такой ужасающий пример лишь для того, чтобы показать:
Пример с базой данных TARN, конечно, преувеличен, но он служит предупреждением. Возможно, результаты 19 289 пациентов не были зарегистрированы именно
На первый взгляд это кажется нелепым, но в реальности такие ситуации возникают довольно часто. Допустим, модель прогнозирования эффективности того или иного лечения основывается на результатах предыдущих пациентов, которые получали такое лечение. Но что, если время лечения предыдущих пациентов было недостаточным для достижения результата? Тогда для некоторых из них конечный исход окажется неизвестен, а модель, построенная только на известных результатах, будет вводить в заблуждение.
Похожая ситуация возникает и с опросами, когда
Предыдущие примеры иллюстрируют первый тип темных данных. Мы знаем, что данные для пациентов TARN существуют, даже если не все значения учтены. Мы знаем, что у людей в списке опроса были ответы, даже если они их не давали. В общем, мы знаем, что существуют некоторые значения данных, но не знаем, какие именно.
Следующие примеры познакомят нас с другим типом темных данных –