Читаем Тени разума. В поисках науки о сознании полностью

Хаотические системы— это динамически развивающиеся физические системы, математические модели таких физических систем или же просто математические модели, не описывающие никакой реальной физической системы и интересные сами по себе; характерно то, что будущее поведение такой системы чрезвычайно сильно зависит от ее начального состояния, причем определяющими могут оказаться самые незначительные факторы. Хотя обыкновенные хаотические системы являются полностью детерминированными и вычислительными, на деле может показаться, что в их поведении ничего детерминированного нет и никогда не было. Это происходит потому, что для сколько-нибудь надежного детерминистического предсказания будущего поведения системы необходимо знать ее начальное состояние с такой точностью, которая может оказаться просто недостижимой не только для тех измерительных средств, которыми мы располагаем, но также и для тех, которые мы только можем вообразить.

В этой связи чаще всего вспоминают о подробных долгосрочных прогнозах погоды. Законы, управляющие движением молекул воздуха, а также другими физическими величинами, которые могут оказаться релевантными для определения будущей погоды, хорошо известны. Однако реальные синоптические ситуации, которые могут возникнуть всего через несколько дней после предсказания, настолько тонко зависят от начальных условий, что нет никакой возможности измерить эти условия достаточно точно для того, чтобы дать хоть сколько-нибудь надежный прогноз. Безусловно, количество параметров, которые необходимо ввести в подобное вычисление, огромно; поэтому, быть может, и нет ничего удивительного в том, что в данном случае предсказание может оказаться на практике просто невозможным.

С другой стороны, подобное — так называемое хаотическое — поведение может иметь место и в случае очень простых систем; примером тому служат системы, состоящие из малого количества частиц. Вообразите, что от вас требуется загнать в лузу бильярдный шар Е, расположенный пятым в некоторой извилистой [7]и очень растянутой цепочке шаров А, В, С, D и Е; вам нужно ударить кием по шару А так, чтобы тот ударил шар В, который, в свою очередь, ударил бы шар С, который ударил бы шар D, который ударил бы шар Е, который, наконец, попал бы в лузу. В общем случае необходимая для этого точность значительно превышает способности любого профессионального игрока в бильярд. Если бы цепочка состояла из 20 шаров, то тогда — даже допустив, что эти шары представляют собой идеально упругие точные сферы, — задача загнать в лузу последний шар оказалась бы не под силу и самому точному механизму из всех доступных современной технологии. Поведение последних шаров цепочки было бы, в сущности, случайным, несмотря на то, что управляющие поведением шаров ньютоновы законы математически абсолютно детерминированы и, в принципе, эффективно вычислимы. Никакое вычисление не смогло бы предсказать реальное поведение последних шаров цепочки просто потому, что нет никакой возможности добиться достаточно точного определения реального начального положения и скорости движения кия или положений первых шаров цепочки. Более того, даже самые незначительные внешние воздействия, вроде дыхания человека в соседнем городе, могут нарушить эту точность до такой степени, которая полностью обесценит результаты любого подобного вычисления.

Здесь необходимо пояснить, что, несмотря на столь серьезные трудности, встающие перед детерминистическим предсказанием, все нормальные системы, к которым применим термин «хаотические», следуетотносить к категории систем, которые я называю «вычислительными». Почему? Как и в других ситуациях, которые мы рассмотрим позднее, для того, чтобы определить, является ли та или иная процедура вычислительной, достаточно задать себе вопрос: выполнима ли она на обычном универсальном компьютере? Очевидно, что в данном случае ответ может быть только утвердительным, по той простой причине, что математически описываемые хаотические системы и в самом деле изучаются, как правило, с помощью компьютера!

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия