Читаем Тени разума. В поисках науки о сознании полностью

Общее число точек в каждом случае одинаково, следовательно, справедливо равенство 3 x 5 = 5 x 3.

В истинности этого равенства можно удостовериться, представив зрительно матрицу

• • • • •

• • • • •

• • • • •

Читая матрицу по строкам, можно сказать, что в ней три строки, каждая из которых содержит по пять точек, что соответствует числу 3 x 5. Однако если эту же матрицу прочесть по столбцам, то получится пять столбцов по три точки в каждом, что соответствует числу 5 x 3. Равенство этих чисел очевидно, поскольку речь в каждом случае идет об одной и той же прямоугольной матрице, просто мы ее по-разному читаем. (Есть и альтернативный вариант: мы можем мысленно повернуть изображение на прямой угол и убедиться в том, что матрица, соответствующая числу 5 x 3, содержит то же количество элементов, что и матрица, соответствующая числу 3 x 5.)

Важный момент описанной визуализации заключается в том, что она непосредственно дает нам нечто гораздо более общее, чем просто частное численное равенство 3 x 5 = 5 x 3. Иными словами, в конкретных числовых значениях а = 3 и b = 5, участвующих в данной процедуре, нет ничего особенного. Полученное правило будет применимо, даже если, скажем, а = 79 797 000 222, а b = 50 000 123 555, и мы с уверенностью можем утверждать, что 79 797 000 222 x 50 000 123 555 = 50 000123 555 x 79 797 000 222, несмотря на то, что у нас нет ни малейшей возможности сколько-нибудь точно представить себе визуально прямоугольную матрицу такого размера (да и ни один современный компьютер не сможет перечислить все ее элементы). Мы вполне можем заключить, что вышеприведенное равенство должно быть истинным — или что истинным должно быть равенство общего вида [8] a x b = b x a— на основании, в сущности, той же самой визуализации, которую мы применяли для конкретного случая 3 x 5 = 5 x 3. Нужно просто несколько «размыть» мысленно действительное количество строк и столбцов рассматриваемой матрицы, и равенство становится очевидным.

Я вовсе не хочу сказать, что все математические отношения можно с помощью верной визуализации непосредственно постигать как «очевидные», или же что их просто можно в любом случае постичь каким-то иным способом, основанным непосредственно на интуиции. Это далеко не так. Для уверенного понимания некоторых математических отношений необходимо строить весьма длинные цепочки умозаключений. Цель математического доказательства, по сути дела, в этом и заключается: мы строим цепочки умозаключений таким образом, чтобы на каждом этапеполучать утверждение, допускающее «очевидное» понимание. Как следствие, конечной точкой умозаключения должно оказаться суждение, которое необходимо принимать как  истинное, пусть даже оно само по себе вовсе и не очевидно.

Кое-кто, наверное, уже вообразил, что в таком случае можно раз и навсегда составить список всех «возможных» этапов умозаключений и тогда всякое доказательство можно будет свести к вычислению, т. е. к простым механическим манипуляциям полученными очевидными этапами. Доказательство Гёделя ( §2.5) как раз и демонстрирует невозможность реализации такой процедуры. Нельзя совершенно избавиться от необходимости в новых «очевидно понимаемых» отношениях. Таким образом, математическое понимание никоим образом не сводится к бездумному вычислению.

<p id="p1.20">1.20. Мысленная визуализация и виртуальная реальность</p>

Интуитивные математические процедуры, описанные в §1.19, имеют весьма ярко выраженный специфический геометрический характер. В математических доказательствах применяются и многие другие типы интуитивных процедур, причем некоторые из них весьма далеки от «геометричности». Однако, как показывает практика, геометрические интуитивные представления чаще всего дают более глубокое математическое понимание. Полагаю, было бы весьма полезно выяснить, какие же именно физические процессы происходят в нашем мозге, когда мы визуализируем что-либо геометрически. Начнем хотя бы с того, что никакой логической необходимости в том, чтобы непосредственным результатом этих процессов было «геометрическое отражение» визуализируемого объекта, по сути дела, не существует. Как мы увидим далее, здесь может получиться нечто совсем иное.

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия