Рассмотрим сначала полностью сознательный случай I
. Поскольку и сам алгоритм, и его роль являются познаваемыми, мы вполне можем счесть, что мы о нихНа данный момент мы достигли следующего результата: случай I
(по крайней мере, в контексте полностью нисходящих алгоритмов) как сколько-нибудь серьезную возможность рассматривать нельзя; тот факт, что система F может в действительности оказаться и необоснованной, как выяснилось, сути проблемы ничуть не меняет. Решающим фактором здесь является невозможность точно установить, является та или иная гипотетическая система F (независимо от ее обоснованности) основой для формирования математических убеждений или же нет. Дело не в непознаваемости самого алгоритма, но в непознаваемости того факта, что процесс понимания3.3. Способен ли познаваемый алгоритм непознаваемым образом моделировать математическое понимание?
Перейдем к случаю II
и попытаемся серьезно рассмотреть возможность того, что математическое понимание на деле эквивалентно некоторому сознательно познаваемому алгоритму либо формальной системе, однако эквивалентность эта принципиально непознаваема. Иными словами, даже при условии познаваемости той или иной гипотетической формальной системы F мы никоим образом не можем убедиться в том, что именно эта конкретная система действительно лежит в основе нашего математического понимания. Правдоподобно ли такое предположение?