Читаем Тени разума. В поисках науки о сознании полностью

О проблеме с сохранением энергии в схемах ГРВ-типа мы уже упоминали в §6.9. «Удары», которым подвергаются частицы (когда их волновые функции самопроизвольно умножаются на гауссову функцию), влекут за собой незначительные нарушения закона сохранения энергии. Более того, передача энергии носит, по всей видимости, нелокальный характер. Это, похоже, является характерной — и, вероятно, неизбежной — особенностью общих теорий такого рода, в которых R-процедура считается реальным физическим эффектом. Мне представляется, что эта особенность может послужить убедительным дополнительным свидетельством в пользу теорий, отводящих ключевую роль в редукции гравитационным эффектам, — поскольку в общей теории относительности сохранение энергии всегда было предметом тонким и даже скользким. Гравитационное поле содержит в себе энергию, которая вносит вполне измеримый вклад в общую энергию (и, стало быть, согласно эйнштейновскому E = mc2, массу) системы. С другой стороны, эта энергия представляет собой некую эфемерную субстанцию, существующую в пустом пространстве каким-то загадочным нелокальным образом{86}. Вспомним, в частности, о массе-энергии, что в виде гравитационных волн излучается системой двойного пульсара PSR 1913+16 (см. §4.5); эти волны суть рябь в самой структуре пустого пространства. Энергия, содержащаяся в полях взаимного притяжения двух нейтронных звезд, также является важной составляющей их динамики, каковую составляющую мы не можем игнорировать. Как раз такая разновидность энергии, «обитающая» в пустом пространстве, и является самой неуловимой из всех. Ее нельзя получить простым «сложением» локальных вкладов плотности энергии, ее даже нельзя локализовать в какой-либо конкретной области пространства-времени (см. НРК, с. 220—221). Возникает искушение соотнести столь же скользкие проблемы нелокальной энергии R-процедуры с аналогичными проблемами классической гравитации — сопоставить одни проблемы с другими в надежде разглядеть за ними логически связную общую картину.

Обеспечивают ли такую логическую связность выдвигаемые мною здесь предположения? Думаю, что со временем мы от них этого непременно добьемся, однако на настоящий момент четкой теоретической основы у нас пока нет. Все, впрочем, говорит за то, что в принципе эта грандиозная задача вполне решаема. В самом деле, как мы уже отмечали ранее, процесс редукции можно сравнить с распадом нестабильной частицы или ядра атома. Представьте себе суперпозицию состояний объекта в двух различных положениях как своего рода нестабильное ядро, распадающееся по истечении некоего характеристического времени «полураспада» на какие-то более стабильные продукты. Аналогичным образом суперпозиция положений объекта — нестабильное квантовое состояние — переходит по истечении некоего характеристического «времени жизни» (определяемого, в грубом приближении, величиной, обратной гравитационной энергии разделения) в состояние стабильное, когда объект оказывается либо в одном положении, либо в другом, что дает нам две возможные формы распада.

Согласно принципу неопределенности Гейзенберга, время жизни (или период полураспада) частицы или ядра атома обратно незначительной неопределенности в массе-энергии исходной частицы. (Например, массу нестабильного ядра полония-210, испускающего в процессе распада α-частицу и превращающегося в свинец, точно определить невозможно, при этом неопределенность имеет порядок величины, обратной периоду полураспада — в данном случае, около 138 суток, — что дает для полония неопределенность массы всего лишь около 10—34 обшей массы ядра! Для отдельных нестабильных частиц, впрочем, неопределенность составляет существенно большую долю массы.) Таким образом, «распад», сопровождающий процесс редукции, также должен предполагать существенную неопределенность энергии исходного состояния. Эта неопределенность, согласно настоящему предположению, обусловлена, по большей части, неопределенностью собственной гравитационной энергии суперпозиции состояний. Собственная же гравитационная энергия включает в себя ту самую эфемерную нелокальную энергию поля, которая уже послужила причиной стольких неприятностей в общей теории относительности и которую нельзя получить простым сложением локальных вкладов плотности энергии. Кроме того, имеется тут и существенная неопределенность в сопоставлении друг другу точек различных пространственно-временных геометрий в суперпозиции, что мы отмечали в §6.10. Если допустить, что существенная «неопределенность» энергии состояний в суперпозиции представлена именно этим гравитационным вкладом, то результат такого допущения вполне согласуется с предсказанным выше временем жизни этого состояния. Таким образом, предлагаемая мною схема позволяет, по всей видимости, убедиться в наличии четкой связи между двумя энергетическими проблемами и по крайней мере обещает возможность построения на основе этих идей вполне непротиворечивой теории.

Перейти на страницу:

Похожие книги

Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан
Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан

В книгу вошли одни из самых известных произведений английского философа Томаса Гоббса (1588-1679) – «Основы философии», «Человеческая природа», «О свободе и необходимости» и «Левиафан». Имя Томаса Гоббса занимает почетное место не только в ряду великих философских имен его эпохи – эпохи Бэкона, Декарта, Гассенди, Паскаля, Спинозы, Локка, Лейбница, но и в мировом историко-философском процессе.Философ-материалист Т. Гоббс – уникальное научное явление. Только то, что он сформулировал понятие верховенства права, делает его ученым мирового масштаба. Он стал основоположником политической философии, автором теорий общественного договора и государственного суверенитета – идей, которые в наши дни чрезвычайно актуальны и нуждаются в новом прочтении.

Томас Гоббс

Философия