Читаем Тени разума. В поисках науки о сознании полностью

По причине такого расхождения во мнениях относительно того, какой из миров на рис. 8.1 следует считать первичным, а какие вторичными, я порекомендовал бы взглянуть на стрелки несколько иначе. Существенным качеством стрелок на рис. 8.1 является не столько их направление, сколько тот факт, что каждая представляет такое соответствие, при котором лишь малая область одного мира «порождает» весь следующий мир целиком. Что касается первой стрелки: мне много раз указывали на то, что огромная часть мира математики (если судить по результатам деятельности самих математиков) если и имеет какое-то отношение к действительному физическому поведению, то весьма незначительное. Получите: в основе структуры нашей физической Вселенной может лежать лишь крохотная часть платоновского мира. Аналогичным образом, вторая стрелка символизирует тот факт, что существование нашего ментального мира есть продукт очень малой части мира физического — той части, где имеются в точности те условия, что необходимы для возникновения сознания, как, например, в мозге человека. Точно так же третья стрелка захватывает весьма небольшую область мира ментальной активности, а именно ту, что «заведует» абсолютными и вневременными вопросами — в особенности, математической истиной. Наша с вами ментальная жизнь проходит, по большей части, совсем в других местах.

Есть нечто парадоксальное в этих соответствиях: каждый мир, похоже, «возникает» всего лишь из крохотной части того мира, что ему предшествует. На рис. 8.1 я постарался этот парадокс подчеркнуть. Впрочем, я рассматриваю стрелки не как утверждения о каких-то действительных «возникновениях», а просто как символы имеющихся соответствий, поскольку не хочу умножать предрассудки, и без того окружающие вопрос о том, какой из миров следует считать первичным, вторичным или третичным, если там вообще уместно такое «старшинство».

И все же полностью избежать предрассудков (или просто предвзятости) на рис. 8.1 мне не удалось. Если верить рисунку, то следует предположить, что целый мир отражается частью (причем малой) своего предшественника. Возможно, мои предрассудки ошибочны. Возможно, какие-то аспекты поведения физического мира невозможно описать в точных математических терминах; возможно, какая-то ментальная жизнь не связана неразрывно с физическими структурами (такими, как мозг); возможно также, что существуют математические истины, которые принципиально недоступны человеческому пониманию или интуиции. Для того, чтобы учесть все эти альтернативные возможности, рисунок 8.1 следует перерисовать таким образом, чтобы какие-то из миров (или все) охватывались стрелкой из предыдущего мира не полностью.

В первой части я большое внимание уделил некоторым следствиям из знаменитой теоремы Гёделя о неполноте. Кто-то из читателей, возможно, придерживается мнения, что теорема Гёделя как раз и утверждает, что в мире платоновских математических истин имеются области, принципиально недоступные человеческому пониманию или интуиции. Надеюсь, что мои доказательства ясно показали, что это не так{108}. Те математические предположения, что упоминаются в остроумном доказательстве Гёделя, человеку вполне доступны — при условии, что они построены в рамках математических (формальных) систем, которые уже приняты нами как достоверные средства оценки математической истинности. Из доказательства Гёделя отнюдь не следует, что существуют недоступные математические истины. Из него следует лишь, что человеческая интуиция не укладывается ни в рамки формальной аргументации, ни в рамки вычислительных процедур. Более того, из него недвусмысленно следует само существование платоновского математического мира. Математическая истина не определяется произвольным образом по правилам некоей «искусственной» формальной системы, но имеет абсолютный характер и находится вне любой такой системы устанавливаемых правил. Поддержка платоновского мировоззрения (в противовес формализму) была одной из важных причин, побудивших Гёделя взяться за работу. С другой стороны, рассуждения Гёделя могут служить иллюстрацией глубокой непостижимости нашего математического восприятия. Для того чтобы такое восприятие возникло, мы не просто «вычисляем»; тут на самом глубинном уровне задействовано что-то еще — что-то, что было бы невозможно без собственно осознания, которое, в конечном счете, и формирует мир восприятий.

Перейти на страницу:

Похожие книги

Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан
Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан

В книгу вошли одни из самых известных произведений английского философа Томаса Гоббса (1588-1679) – «Основы философии», «Человеческая природа», «О свободе и необходимости» и «Левиафан». Имя Томаса Гоббса занимает почетное место не только в ряду великих философских имен его эпохи – эпохи Бэкона, Декарта, Гассенди, Паскаля, Спинозы, Локка, Лейбница, но и в мировом историко-философском процессе.Философ-материалист Т. Гоббс – уникальное научное явление. Только то, что он сформулировал понятие верховенства права, делает его ученым мирового масштаба. Он стал основоположником политической философии, автором теорий общественного договора и государственного суверенитета – идей, которые в наши дни чрезвычайно актуальны и нуждаются в новом прочтении.

Томас Гоббс

Философия