Конечно, хотелось бы быть уверенными в непротиворечивости формулировок, описывающих бесконечные модели, но таких, что все используемые ими основные понятия представляются совершенно «ясными» и «отчетливыми». Но история науки не может похвастаться тем, что ей везло на доктрины, оперирующие исключительно ясными и отчетливыми идеями и покоящиеся на твердой интуитивной основе, а именно на них и приходится делать весь расчет. В некоторых областях математики, для которых существенную роль играют различные допущения о бесконечных совокупностях, были обнаружены весьма серьезные противоречия, и это несмотря на интуитивную ясность понятий, используемых при этом, и кажущуюся корректность применяемых в данных теориях умственных конструкций. Такие противоречия (именуемые обычно «антиномиями») были обнаружены, в частности, в построенной Георгом Кантором в конце XIX в. теории бесконечных множеств; противоречия эти показали, что кажущаяся ясность даже такого элементарного понятия, как понятие множества (класса, совокупности), не может обеспечить непротиворечивости ни одной конкретной системы, в которой используется такое понятие. Поскольку же математическая теория множеств, в которой рассматриваются свойства совокупностей элементов, часто провозглашается основой для остальных разделов математики (в частности, элементарной арифметики), естественно спросить, не проникают ли противоречия, подобные тем, что были обнаружены в формулировке теории бесконечных множеств, и в другие математические дисциплины.
И в подтверждение такого подозрения Бертран Рассел построил противоречие, оставаясь исключительно в рамках элементарной логики, — противоречие, в точности подобное тому, что было обнаружено первоначально в канторовской теории бесконечных классов (множеств). Антиномию Рассела можно описать следующим образом. Будем различать классы в зависимости от того, являются ли они своими собственными элементами или нет. Назовем класс «нормальным» в том и только в том случае, когда он не содержит самого себя в качестве элемента; в противном же случае будем называть класс «ненормальным». Примером нормального класса может служить класс всех математиков — ведь сам такой класс не является, очевидно, математиком и не является потому своим собственным элементом. Примером ненормального класса является класс всех мыслимых вещей; сам этот класс является, очевидно, «мыслимой вещью», а тем самым — и своим собственным элементом.
Определим теперь класс
Мы убедились в важности проблемы непротиворечивости (совместимости) и ознакомились с классическим, «стандартным», методом ее решения с помощью моделей. Мы видели, что проблема эта обычно требует использования бесконечных моделей, описание которых, однако, само чревато внутренними противоречиями. Нам придется согласиться поэтому, что метод моделей имеет ограниченную ценность в качестве орудия решения проблемы и недостаточен для получения окончательного ответа на нее.
3
Абсолютные доказательства непротиворечивости
Принципиальные ограничения, препятствующие использованию моделей для установления непротиворечивости и перерастающие в уверенность подозрения, что многие математические системы чреваты внутренними противоречиями, привели к тому, что были предприняты совершенно новые попытки решения проблемы непротиворечивости. Альтернативный — по отношению к упоминавшимся до сих пор доказательствам относительной непротиворечивости— подход был указан Гильбертом. Его целью было построение «абсолютных» доказательств непротиворечивости различных систем — доказательств, не исходящих из предположений о непротиворечивости какой-либо другой системы. Чтобы понять сущность открытия Гёделя, нам понадобится разобраться в общих чертах в гильбертовском подходе к проблеме.