Читаем Teopeмa Гёделя полностью

Но, пожалуй, наиболее важным достижением XIX века явилось решение еще одной задачи, также восходящей еще к грекам, которая с тех пор оставалась без ответа. В числе аксиом, на базе которых строилась евклидова систематизация геометрии, имеется так называемая аксиома параллельности. В предложенной Евклидом формулировке эта аксиома равносильна утверждению (хотя и не совпадает с ним), что через точку, лежащую вне данной прямой, можно провести единственную прямую, параллельную данной прямой. Еще античным математикам эта аксиома отнюдь не казалась самоочевидной. Поэтому они пытались доказать ее в качестве следствия из остальных аксиом Евклида, которые, напротив, представлялись им совершенно очевидными. Можно ли, однако, действительно получить искомое доказательство для аксиомы параллельности? Поколения математиков безуспешно пытались ответить на этот вопрос. Но неоднократные неудачи попыток построения искомого доказательства не означали еще, что никто не преуспеет в этом деле больше, чем в важной для человечества проблеме изобретения безотказно и на все времена действующего средства от насморка. Такое положение вещей продолжалось до середины XIX столетия — до тех пор, пока в работах Гаусса, Бойаи, Лобачевского, Римана и других математиков не была доказана невозможность вывода аксиомы параллельности из остальных аксиом евклидовой геометрии. Этот результат имел громадное значение для понимания природы нашего мышления. В первую очередь он привлек внимание к тому поразительному факту, что можно доказать в качестве теоремы невозможность доказательства некоторых утверждений средствами данной системы.

Как мы увидим ниже, теорема Гёделя, которой посвящена наша книга, состоит в доказательстве невозможности доказательства некоторых арифметических утверждений средствами арифметики. Кроме того, разрешение старой проблемы об аксиоме параллельности неизбежно приводило к выводу, что аксиоматика Евклида отнюдь не является последним словом геометрии, — ведь можно, оказывается, построить новые геометрические системы, исходя из перечней аксиом, отличных от евклидовых и даже несовместимых с ними. Например, как хорошо известно, чрезвычайно интересные и плодотворные результаты были получены заменой евклидовой аксиомы параллельных допущением, согласно которому через точку, лежащую вне данной прямой, можно провести более чем одну прямую, параллельную этой прямой, или же, напротив, допущением, согласно которому параллельных прямых вообще не бывает. Традиционное убеждение, что аксиомы геометрии (или вообще аксиомы любой науки) могут быть приняты на основании их «самоочевидности», было, таким образом, совершенно подорвано. Более того, постепенно стало все более и более ясным, что подлинным предметом чистой математики является вывод теорем из постулированных допущений и что вопрос о том, являются ли аксиомы, принятые математиком для той или иной цели, в самом деле истинными, есть совсем не его забота. Наконец, плодотворные модификации ортодоксальной геометрической аксиоматики привели к пересмотру и уточнению аксиоматической базы многих других математических дисциплин.

На аксиоматической основе были полностью перестроены и такие области науки, которые до тех пор строились лишь более или менее интуитивным образом. Например, так строилась обычная арифметика натуральных чисел, до тех пор пока в 1899 г. итальянский математик Дж. Пеано, исходивший из несколько более ранней аксиоматики немецкого математика Р. Дедекинда, не аксиоматизировал ее.

Из всех критических работ по основаниям математики в конечном счете вытекает, что привычная трактовка математики как некоей науки «о числах» только способна вводить в заблуждение и никоим образом не соответствует подлинной сути дела. Ведь стало совершенно очевидным, что математика есть попросту наука, изучающая получение логических следствий из некоторых заданных аксиом, или постулатов. Фактически стало общепризнанным то обстоятельство, что математические выводы и заключения не имеют никакого другого смысла, помимо того в некотором роде специального смысла, который связан с терминами или выражениями, входящими в постулаты. Таким образом, математика оказалась даже еще значительно более абстрактной и формальной наукой, чем это было принято считать: более абстрактной — поскольку математические предложения в принципе могут быть истолкованы скорее как утверждения о чем угодно, а не как утверждения, относящиеся к некоторым фиксированным множествам предметов и неотъемлемым свойствам этих предметов; более формальной — поскольку правильность математических доказательств гарантируется чисто формальной структурой некоторых предложений, а отнюдь не содержанием этих предложений.

Перейти на страницу:

Все книги серии Науку-всем!

Teopeмa Гёделя
Teopeмa Гёделя

Нагель Эрнест, Ньюмен Джеймс Рой. Теорема Гёделя: Пер. с англ. Изд. 2-е, испр. — М.: КРАСАНД, 2010. — 120 с. (НАУКУ — ВСЕМ! Шедевры научно-популярной литературы.) Вниманию читателя предлагается книга известного американского логика Э. Нагеля и опытного популяризатора науки Дж. Р. Ньюмена, посвященная теореме Гёделя о неполноте. Эта теорема была изложена в небольшой статье К. Гёделя, которая впоследствии сыграла решающую роль в истории логики и математики. Авторы настоящей книги, не пытаясь дать общий очерк идей и методов математической логики, строят изложение вокруг центральных, с их точки зрения, проблем этой науки — проблем непротиворечивости и полноты. Доказательство того факта, что для достаточно богатых математических теорий требования эти несовместимы, и есть то поразительное открытие Гёделя, которому посвящена книга. Не требуя от читателя по существу никаких предварительных познаний, авторы с успехом объясняют ему сущность одной из самых замечательных и глубоких теорем математики и логики. Для специалистов по математической логике, студентов и аспирантов, а также всех заинтересованных читателей.

Эрнст Нагель

Математика
Нет соединения с сервером, попробуйте зайти чуть позже