В частном случае, если премия не инвестируется в какой — либо актив и, ни покупатель опциона, ни его продавец в среднем не получат прибыли, т. е. математические ожидания доходностей опционов будет равна нулю. Поэтому владелец опциона заинтересован в инвестициях премии в высокодоходный актив, что позволит, во — первых, повысить математическое ожидание доходности опциона до. Во — вторых, согласно соотношениям (10.43) и (10.44) это позволит владельцу снизить стоимость опциона и тем самым увеличить математическое ожидание доходности опциона для потенциального покупателя также до. Следовательно, в инвестициях премии в высокодоходный актив заинтересован не только продавец опциона, но и его покупатель.
В соответствии с формулами (10.43) и (10.44) экспоненциальный характер изменений математических ожиданий доходностей и от аргумента определяет постоянство математических ожиданий годовых доходностей и независимо от времени покупки европейского опциона. Поэтому при стоимости опционов, которые определяются формулами (10.43) и (10.44) за счёт постоянства математических ожиданий годовых доходностей привлекательность европейских опционов сохраняется на протяжении всего их срока действия. Для потенциального покупателя это обстоятельство обеспечивает равноценные условия для приобретения опционов в любой удобный для него момент времени. Однако для активной торговли опционами в течение всего срока их действия необходимо создание благоприятных условий и для продажи этой ценной бумаги в любой удобный момент времени.
Математические ожидания капитальных доходностей европейских опционов за промежуток относительного времени после их приобретения определяются соотношениями (10.22) и (10.23). Для определения математических ожиданий годовых капитальных доходностей можно воспользоваться соотношением (10.24). В результате получаем
для опциона «
где — математическое ожидание годовой капитальной доходности европейского опциона «
для опциона «
где — математическое ожидание годовой капитальной доходности европейского опциона «
Из данных соотношений следует, что математическое ожидание годовой капитальной доходности европейских опционов «
Поэтому для владельца опциона, который предпочтёт по какой — либо причине уклониться от риска, может быть выгодна продажа опциона с заведомо известной и относительно низкой детерминированной доходностью. Владелец опциона, который полагает риск ожидания успешного исполнения опциона оправданным, может рассчитывать на такую же, но среднюю доходность.
Таким образом, при справедливой стоимости европейских опционов, достигаются условия обоюдной выгоды купли/продажи, как для продавца, так и для покупателя.
Используя соотношения (10.37) — (10.40), а также (10.41) и (10.42) получаем уравнения
Решая данные уравнения, находим соотношения для расчёта стоимостей американских опционов «
Поскольку величины и (для опциона «
В частном случае, при и, когда досрочное исполнение опционов маловероятно (например, в конце срока действия опционов), стоимости американских и европейских опционов практически одинаковы.
В общем же случае стоимости американских и европейских опционов не могут не отличаться. Например, при и, т. е. когда досрочное исполнение опционов практически гарантировано, стоимости американских опционов определяются исключительно дисконтированными средними доходами от реализации досрочного исполнения
Для приближённых расчётов будем полагать, тогда формулы (10.49) и (10.50) можно преобразовать к виду
здесь
Анализ соотношений (10.51) и (10.52) показывает, что вывод приближённых формул для стоимостей американских опционов в аналитическом виде не представляется возможным.
По аналогии с формулами (10.45) и (10,46), преобразуем соотношения (10.51) и (10.52) к виду
В данных соотношениях коэффициенты и определяются численными методами путём решения уравнений (10.51) и (10.52) относительно и соответственно. На рис. 10.8 представлены графики зависимостей коэффициентов и от аргумента интеграла вероятностей и относительного времени.
Рис. 10.8. Графики зависимостей коэффициентов и от аргумента интеграла вероятностей и относительного времени
Анализ графиков на рис. 10.8 показывает, что в общем случае при стоимость американских опционов всегда выше стоимости европейских опционов, если базисные акции, цены исполнения и даты исполнения идентичны. Лишь в частном случае при стоимости американских и европейских опционов равны.