Читаем Теоретический минимум по Computer Science полностью

Надзор за ПО с открытым исходным кодом осуществляет куда больше глаз, поэтому лицам с дурными намерениями и правительственным учреждениям становится все труднее находить лазейки для слежки. Когда вы используете Mac OS или Windows, вам приходится доверять Microsoft или Apple, что они не поставят под угрозу вашу безопасность и приложат все усилия для предотвращения любого серьезного дефекта. А вот системы с открытым исходным кодом открыты для общественного контроля, потому в случае с ними меньше вероятность, что брешь в системе безопасности останется незамеченной.

7.3. Иерархия памяти

Мы знаем, что компьютер работает за счет ЦП, который исполняет простые команды. Мы знаем также, что эти команды могут оперировать только данными, хранящимися в регистрах ЦП. Однако их емкость обычно намного меньше тысячи байтов. Это означает, что регистрам ЦП постоянно приходится перемещать данные в ОЗУ и обратно.

Если доступ к памяти медленный, то ЦП приходится простаивать, ожидая, пока ОЗУ выполнит свою работу. Время, которое требуется, чтобы прочитать и записать данные в память, непосредственно отражается на производительности компьютера. Увеличение скорости памяти может разогнать ваш компьютер так же, как увеличение скорости ЦП. Данные в регистрах ЦП выбираются почти моментально самим процессором всего в одном цикле[80]. А вот ОЗУ гораздо медленнее.

Разрыв между памятью и процессором

Недавние технические разработки позволили экспоненциально увеличивать скорость ЦП. Быстродействие памяти тоже растет, но гораздо медленнее. Эта разница в производительности между ЦП и ОЗУ называется разрывом между памятью и процессором: команды ЦП «дешевы» — мы можем выполнять их в огромном количестве, тогда как получение данных из ОЗУ занимает намного больше времени и потому обходится «дорого». По мере увеличения этого разрыва возрастала важность эффективного доступа к памяти (рис. 7.10).

В современных компьютерах требуется приблизительно тысяча циклов ЦП, чтобы получить данные из ОЗУ, — около 1 микросекунды[81]. Это невероятно быстро, но составляет целую вечность по сравнению со временем доступа к регистрам ЦП. Программистам приходится искать способы сократить количество операций с ОЗУ.


Рис. 7.10. Разрыв в быстродействии между памятью и процессором в последние десятилетия

Временная и пространственная локальность

Пытаясь свести к минимуму количество обращений к ОЗУ, специалисты в области computer science стали замечать две закономерности, получившие следующие названия:

• временна́я локальность — если выполняется доступ к некоему адресу памяти, то вполне вероятно, что к нему вскоре обратятся снова;

• пространственная локальность — если выполняется доступ к адресу памяти, то вполне вероятно, что к смежным с ним адресам вскоре обратятся тоже.

Если исходить из вышеприведенных наблюдений, можно подумать, что хранить такие адреса памяти в регистрах ЦП — отличная идея. Это позволило бы избежать большинства дорогостоящих операций с ОЗУ. Однако отраслевые инженеры не нашли надежного способа разработать микросхемы ЦП с достаточным количеством внутренних регистров. И тем не менее они обнаружили отличный способ опереться на временную и пространственную локальность. Давайте посмотрим, как он работает.

Кэш L1

Есть возможность сформировать чрезвычайно быструю вспомогательную память, интегрированную в ЦП. Мы называем ее кэшем первого уровня, или кэшем L1. Получение данных из этой памяти в регистры осуществляется чуть-чуть медленнее, чем получение данных из самих регистров.

При помощи кэша L1 мы можем копировать содержимое адресов памяти, причем скорость доступа с высокой вероятностью будет близка к скорости регистров ЦП. Данные очень быстро загружаются в регистры ЦП. Требуется где-то 10 циклов ЦП, чтобы переместить данные из кэша L1 в регистры. Это в сто раз быстрее ситуации, когда их приходится брать из ОЗУ.

Более половины обращений к ОЗУ можно выполнить за счет кэша L1 объемом 10 Кб и умного использования временной и пространственной локальности. Это новаторское решение привело к коренному изменению вычислительных технологий. Оборудование ЦП кэшем L1 позволило кардинально сократить время, которое процессору прежде приходилось тратить на ожидание данных. Вместо простоев он теперь занят выполнением фактических вычислений.

Кэш L2

Перейти на страницу:

Все книги серии Библиотека программиста

Программист-фанатик
Программист-фанатик

В этой книге вы не найдете описания конкретных технологий, алгоритмов и языков программирования — ценность ее не в этом. Она представляет собой сборник практических советов и рекомендаций, касающихся ситуаций, с которыми порой сталкивается любой разработчик: отсутствие мотивации, выбор приоритетов, психология программирования, отношения с руководством и коллегами и многие другие. Подобные знания обычно приходят лишь в результате многолетнего опыта реальной работы. По большому счету перед вами — ярко и увлекательно написанное руководство, которое поможет быстро сделать карьеру в индустрии разработки ПО любому, кто поставил себе такую цель. Конечно, опытные программисты могут найти некоторые идеи автора достаточно очевидными, но и для таких найдутся темы, которые позволят пересмотреть устоявшиеся взгляды и выйти на новый уровень мастерства. Для тех же, кто только в самом начале своего пути как разработчика, чтение данной книги, несомненно, откроет широчайшие перспективы. Издательство выражает благодарность Шувалову А. В. и Курышеву А. И. за помощь в работе над книгой.

Чед Фаулер

Программирование, программы, базы данных / Программирование / Книги по IT

Похожие книги

Компьютерные сети. 6-е изд.
Компьютерные сети. 6-е изд.

Перед вами шестое издание самой авторитетной книги по современным сетевым технологиям, написанное признанным экспертом Эндрю Таненбаумом в соавторстве со специалистом компании Google Дэвидом Уэзероллом и профессором Чикагского университета Ником Фимстером. Первая версия этого классического труда появилась на свет в далеком 1980 году, и с тех пор каждое издание книги неизменно становилось бестселлером. В книге последовательно изложены основные концепции, определяющие современное состояние компьютерных сетей и тенденции их развития. Авторы подробно объясняют устройство и принципы работы аппаратного и программного обеспечения, рассматривают все аспекты и уровни организации сетей — от физического до прикладного. Изложение теоретических принципов дополняется яркими, показательными примерами функционирования интернета и компьютерных сетей различного типа. Большое внимание уделяется сетевой безопасности. Шестое издание полностью переработано с учетом изменений, произошедших в сфере сетевых технологий за последние годы, и, в частности, освещает такие технологии, как DOCSIS, 4G и 5G, беспроводные сети стандарта 802.11ax, 100-гигабитные сети Ethernet, интернет вещей, современные транспортные протоколы CUBIC TCP, QUIC и BBR, программно-конфигурируемые сети и многое другое.

Дэвид Уэзеролл , Ник Фимстер , Эндрю Таненбаум

Учебные пособия, самоучители