Я пытаюсь найти другое объяснение тайны. Мне хочется понять – если гравитон существует, можно ли его обнаружить?
Я не знаю ответа на этот вопрос, но у меня есть основания предполагать, что ответ отрицательный. Подтверждением служит устройство по обнаружению гравитационных волн под названием LIGO (Laser Interferometer Gravitatio nal-Wave Observatory[24]
), части которого находятся сейчас в штатах Луизиана и Вашингтон. Принцип действия LIGO – очень точное измерения расстояния между двумя зеркалами посредством отражения света от одного к другому. При прохождении гравитационной волны расстояние между зеркалами должно незначительно измениться. В действительности из‑за шумовых помех детекторы LIGO способны обнаружить лишь колебания, значительно более сильные, чем одиночная гравитационная волна. Но даже в совершенно бесшумной Вселенной я мог бы ответить на вопрос, способен ли идеальный детектор LIGO обнаружить гравитационную волну. Ответ – нет. В бесшумной Вселенной предел точности измерения расстояния определяется квантовыми неопределенностями в положениях зеркал. Для уменьшения квантовых неопределенностей зеркала должны быть тяжелыми. Простые подсчеты, основанные на известных законах гравитации и квантовой механики, приводят к впечатляющим результатам. Чтобы обнаружить единичную гравитационную волну с помощью LIGO, зеркала должны быть настолько тяжелыми, что смогут притянуть друг друга с необратимой силой и соединиться вместе, образовав черную дыру. Другими словами, сама природа запрещает нам обнаружить гравитационные волны подобным образом.Я предлагаю гипотезу, основанную на этом единственном мысленном эксперименте: единичные гравитоны не могут быть обнаружены никаким устройством. Если эта гипотеза справедлива, то она подразумевает, что квантовая теория гравитации не подлежит проверке, следовательно, с научной точки зрения бессмысленна. Классическая и квантовая Вселенные могут тогда мирно сосуществовать, потому что никакого несоответствия между двумя картинами мира никогда не обнаружится. Обе картины будут правдивы, а надежда на единую концепцию превратится в иллюзию.
Невероятная неопределенность
Сатьяджит Дас
Финансовый эксперт, консультант по рискам; автор книги
Неопределенность – это конец, который часто выглядит как начало. Ее совершенная красота – составная часть математики, методологии, философии, лингвистики и судьбы.
В 1927 году Вернер Гейзенберг показал, что неопределенность – неотъемлемая составляющая квантовой механики. Невозможно одновременно измерить разные характеристики частицы – положение и импульс. В квантовом мире материя может существовать в форме либо частицы, либо волны. Основные элементы не являются ни частицами, ни волнами, но проявляют свойства и тех, и других, что служит просто различными способами теоретического описания квантового мира.
Неопределенность обозначает конец достоверности. Если мы пытаемся точно измерить одно качество, мы лишаемся возможности измерить другое. Процесс измерения сводит на нет наше понимание системы.
Неопределенность отвергает научный детерминизм, подразумевая, что знание человека о мире всегда неполно, неточно и очень условно.
Неопределенность оспаривает причинную связь. Гейзенберг замечал: «Закон причинности утверждает, что, точно зная настоящее, можно предсказать будущее. Но вдумайтесь: в этой формулировке ложен не вывод, а предпосылка. Мы в принципе не можем знать все элементы, определяющие настоящее».
Неопределенность ставит под вопрос методологию. Эксперименты могут доказать только то, что они предположительно должны были доказать. Неопределенность – теория, основанная на практической несостоятельности экспериментов.
Неопределенность и квантовая механика противостоят судьбе, равно как и истине, и упорядоченности. Они предполагают вероятностный мир, в котором мы ничего не можем знать с определенностью, но только в качестве вероятности. Это устраняет представления Ньютона о времени и пространстве из существующей реальности. В квантовом мире механика понимается как возможность вне всякой причинной связи.
Альберт Эйнштейн отказался принять то, что положения в пространстве-времени никогда не могут быть точно определены, а квантовые вероятности не связаны с какими-либо причинами. Он отвергал не теорию в целом, а отсутствие причинно-следственной связи. В знаменитом письме к Максу Борну он утверждал: «Во всяком случае, я убежден, что Он [Бог] не играет в кости». Но, как позднее отметил Стивен Хокинг (что оценил бы Гейзенберг), «Бог не только играет в кости… иногда он бросает их туда, где никто не сможет их увидеть».