Продолжайте вращение в том же направлении, по-прежнему держа кисть руки ладонью вверх. После поворота на 180° (половина полного оборота) ваша рука вынуждена протянуться назад, чтобы мяч по-прежнему оставался у вас на ладони.
Вращение продолжается. При 270° (это три четверти полного оборота) ваша рука нелепо вывернута, и мяч едва удерживается на ладони.
В этот момент вам может показаться, что довернуть мяч на последние 90° до полного оборота не удастся. Но если вы все-таки попытаетесь это сделать, то обнаружите, что можете продолжать вращение мяча так, чтобы ладонь по-прежнему оставалась обращенной кверху: для этого вам придется поднять руку, согнув ее в локте так, чтобы участок от кисти до локтя был обращен вперед. Мяч совершил полный оборот – на 360°. Однако если вы сделали все правильно, то обнаружите, что вам пришлось для этого согнуть руку в самом мучительном и неудобном положении.
Чтобы уменьшить мучения, продолжайте вращать мяч – совершите оборот еще на 90° (четверть полного оборота), не забывая, что ладонь по-прежнему должна быть обращена кверху. Теперь мяч окажется у вас над головой, и болезненное напряжение в плече несколько ослабнет.
Наконец, подобно официанту, являющему клиентам поднос с главным блюдом, продолжайте движение, совершая остальные три четверти полного оборота: в итоге мяч вместе с вашей рукой окажутся в первоначальном положении (какое облегчение!).
Если вы сумели проделать все стадии трюка правильно и без травм, вы обнаружите, что траектория мяча походит на изображенную в пространстве восьмерку или знак бесконечности (f) и что траектория эта совершила не один полный поворот, а два. Таким образом, истинная симметрия пространства соответствует повороту не на 360°, а на 720°.
Хотя это упражнение может показаться пустой забавой или, в лучшем случае, мучительным элементом баскетбольной тренировки, тот факт, что истинная симметрия пространства подразумевает не однократное, а двукратное вращение, является весьма значимым для понимания природы физического мира на его наиболее микроскопическом уровне. Иными словами, из этого факта следует, что «шарики» (например, электроны), «привязанные» к некоей отдаленной точке посредством упругих деформируемых «струн» (скажем, линий магнитного поля), должны совершить двойной оборот, чтобы вернуться к своей исходной конфигурации. А если копнуть еще глубже, обнаружится, что такая природа сферической симметрии, требующая двойного вращения, приводит к тому, что два электрона, вращающиеся вокруг своей оси в одном и том же направлении, не могут находиться в одном и том же месте в один и тот же момент времени. В свою очередь, этот принцип исключительности лежит в основе стабильности материи. Если бы истинная симметрия пространства требовала лишь однократного вращения, все атомы вашего тела в кратчайшую долю секунды схлопнулись бы в ничто. К счастью, истинная симметрия пространства требует двойного оборота, и ваши атомы стабильны. Пускай этот факт утешает вас, когда вы будете прикладывать лед к измученному плечу.
Закон Мура
Родни Брукс
Роботолог, почетный профессор Массачусетского технологического института; учредитель, председатель и технический директор компании
Впервые закон Мура явился миру в четырехстраничной статейке 1965 года, написанной Гордоном Муром, в ту пору работавшим в
Закон Мура справедливо считается одной из основных движущих сил революции, которая произошла в информационных технологиях за последние полвека. Такое частое удвоение числа транзисторов позволило нашим компьютерам становиться вдвое мощнее, сохраняя прежнюю стоимость; при этом они могли хранить или отображать вдвое больше данных, быстродействие машин также удваивалось, они становились компактнее, дешевле и, вообще говоря, вдвое лучше, причем это удвоение шло словно бы по расписанию.