Вращающийся однородный диск представляет собой трехмерный гироскоп, поскольку вращение происходит в пространственных углах (и в данном случае используется один угол). Для того, чтобы перемещать центр масс трехмерного гироскопа за счет действия внутренних сил необходимо каждый раз выбрасывать массу и создавать таким образом не скомпенсированные силы инерции, действующие на его центр масс. Это напоминает разновидность реактивного движения, но только менее рациональное, чем существующее.
Существует возможность добиться такого же результата без выброса масс, если использовать устройство, представляющее собой
На
а) поступательная сила инерции:
F 1= (М + 2m)х''
б) проекция двух вращательных сил инерции на ось Х:
F 2= - 2mrw 2cosф - 2mrw' sinф.
Рис. 46. Принципиальная схема четырехмерного гироскопа.
Сумма этих сил равна нулю, поэтому центр масс четырехмерного гироскопа покоится или движется равномерно и прямолинейно, а ускоренная система отсчета, связанная с ним, оказывается локально инерциальной системой второго рода.
Изменить скорость центра масс четырехмерного гироскопа можно двумя способами:
1) подействовать на тело Мвнешней силой, что приведет к изменению силы F 1и нарушит баланс сил инерции;
2) изменить угловую скорость вращения w, что приведет к изменению силы F 2и так же нарушит баланс сил инерции.
4.6. Инерциоид Толчина.
Изменение скорости центра масс четырехмерного гироскопа, используя второй способ (без внешнего воздействия), можно осуществить на практике, если смонтировать на теле Мустройство (мотор-тормоз), которое будет менять угловую скорость вращения грузов в нужном секторе углов. Управляя с помощью мотор-тормоза силами инерции внутри четырехмерного гироскопа, мы получим движение его центра масс.
В России подобное устройство было сконструировано инженером В.Н. Толчиным (
Рис. 47. Инерциоид Толчина.
Рис. 48. График не скомпенсированной силы инерции, действующей на центр масс четырехмерного гироскопа.
Рис. 49. Демонстрация результата работы мотор-тормоза. Не скомпенсированная сила инерции F с, созданная мотор-тормозом, действует на центр масс инерциоида.
Расчеты показывают, что не скомпенсированная сила инерции наиболее эффективно действует на центр масс инерциоида вблизи углов вращения 0° и 180° (см.
Обычно движение инерциоида начинается из состояния покоя его центра масс и с углов вращения грузов в секторе 180° - 330°. Когда вращающиеся грузы подходят к углу вращения 330° мотор-тормоз начинает ускорять вращение грузов (см.
Когда угол поворота составит 150°, тормозной кулачек набегает на тормозную колодку. В результате происходит процесс торможения вращения грузов в секторе углов 150° - 180°, что приводит к нарушению баланса сил инерции и появлению не скомпенсированной силы инерции F с. Эта сила уменьшает скорость движения центра от 10 см/сек. до нуля. Начиная с угла 180°, мотор-тормоз перестает работать, поэтому при вращении грузов в секторе углов 180° - 330° силы инерции, действующие на центр масс, уравновешены, и центр масс остается в состоянии покоя.