Ранее мы показали относительную природу гравитационных, электромагнитных и торсионных полей при различных координатных преобразованиях, включая вращательные. Единственным полем, которое ведет себя как некоторая абсолютная величина, как относительно поступательных, так и относительно вращательных координатных преобразований, оказывается риманова кривизна пространства. Опыты по рождению частиц из физического вакуума показывают, что их массы, заряды, спины или какие-либо другие физические характеристики относительны, т.е. появляются и исчезают в процессах рождения из вакуума или ухода в вакуум.
В теории физического вакуума эти характеристики определяются через риманову кривизну пространства, поэтому необходимо было ввести в теорию такой класс систем отсчета, в которых поле римановой кривизны ведет себя как относительная величина.
Рис. 14
. Конформная система отсчета меняет длину своих базисных векторов по закону Е = W(x)e, где W(х) - масштабный фактор.
Этому требованию удовлетворяют конформные системы
отсчета, у которых вектора базиса имеют переменную величину (см. рис.14.), т.е. могут изменяться от точки к точке, а так же в различные моменты времени. В пространстве событий, образованном множеством относительных координат конформных систем отсчета, риманова кривизна становится относительной, поэтому оказываются относительными массы, заряды, спин и другие характеристики вакуумных возбуждений. С помощью конформных координатных преобразований можно описывать процессы рождения и уничтожения элементарных частиц или их взаимные превращения. Например, масса покоя частицы m0 = const при конформных преобразованиях координат становится переменной и меняется по закону m(x) = m0/W(х), где W(х) - масштабный фактор конформных преобразований.
Таблица 2.
В математике конформная геометрия впервые была предложена немецким математиком Г. Вейлем. Поэтому наиболее богатое по своим свойствам пространство событий с геометрией Вайценбека, дополненное конформными свойствами (пространство Вайценбека-Вейля) больше всего подходит для описания структуры физического вакуума. В таблице 2
наглядно представлено развитие принципа относительности в рамках дедуктивного подхода. Глядя на эту таблицу, можно прийти к заключению, что все в этом мире относительно. Более того, развитие теории относительности потребовало введения нового физического принципа - принципа всеобщей относительности, который утверждает, что все физические поля имеют относительную природу. Задача теоретика состоит в том, чтобы найти такие уравнения физики, в которых все поля относительны. Оказалось, что этому требованию в максимальной степени (на сегодняшний день) удовлетворяют уравнения физического вакуума, построенные на базе структурных уравнений геометрии Вайценбека-Вейля.Глава II. Новая картина мира.
2.1. Мир высшей реальности.
Уравнения теории физического вакуума позволяют выделить три мира, составляющих нашу реальность: грубоматериальный, тонкоматериальный и мир высшей реальности. В свою очередь мир высшей реальности разделяется на три уровня: Абсолютное «Ничто», первичный вакуум и вакуум (см. рис.15).
Рис. 15.
Основные уровни реальности в теории физического вакуума.
Абсолютное «Ничто» описывается тождеством вида:
0 = 0
С точки зрения современной науки (в рамках двоичной логики «да» и «нет») это тождество бессодержательно, поскольку не позволяет сказать об Абсолютном «Ничто» ничего конкретного. Тем не менее, именно этот уровень реальности порождает уровни первичного вакуума и вакуума. К такому заключению мы приходим потому, что уровень Абсолютного «Ничто» обладает максимальной устойчивостью.
Действительно, вакуумный уровень описывается системой уравнений, которые переходят в уравнения первичного вакуума, когда риманова кривизна обращается в нуль (см. рис. 13 б). Этот переход позволяют совершить конформные преобразования координат, изменяющие риманову кривизну пространства. В свою очередь, уравнения, описывающие первичный вакуум, опять же с помощью конформных преобразований, сводятся к тождеству 0=0, т.е. к Абсолютному «Ничто». В рамках формальной логики это максимально устойчивое состояние.