Читаем Теория физического вакуума в популярном изложении полностью

На плоскости Е/с - р (энергия-импульс), принятой в специальной теории относительности, изображены шесть классов частиц, рождаемых из физического вакуума.

1. Частицы с положительной массой покоя и положительной энергией (правая материя)


m+ > 0, E > 0.


Примером таких частиц являются электроны, протоны, нейтроны и т.д.

2. Частицы с отрицательной массой покоя и отрицательной энергией (левая материя)


m - < 0, E < 0.


К левой материи относятся античастицы - позитроны, антипротоны и т.д.

3. Частицы с нулевой массой покоя и положительной энергией (правая материя)


m+ = 0, E > 0.


Такой частицей является фотон.

4. Частицы с нулевой массой покоя и отрицательной энергией (левая материя)


m - = 0, E < 0.


Эта частица должна рождаться из вакуума одновременно с фотоном.

5. Частицы с мнимой массой покоя и мнимой энергией, имеющей положительный знак перед мнимой единицей (правая материя)


m+ = im, E = ie.


Один из видов торсионного поля - тахион.

6. Частицы с мнимой массой покоя и мнимой энергией, имеющей отрицательный знак перед мнимой единицей (левая материя)


m - = -im, E = -ie.


Торсионное поле, сопровождающее рождение тахиона (частица 5) из вакуума - антитахион.

Российский физик Я.П. Терлецкий предложил называть частицы с положительной массой и положительной энергией позитонами, а если эти величины отрицательны - негатонами. Поскольку первоначальная энергия, импульс, масса, заряд, спин и другие физические характеристики вакуума равны нулю, то законы сохранения требуют, чтобы частицы рождались из вакуума не парами, а квадригами (квадриги Терлецкого). Например, при рождении из вакуума таких основных частиц как протоны и электроны (обозначим их как +1p+ и е- ), одновременно должны рождаться негатонные протон-электронные пары ( -1p- и е+) или


0 = +1p+ и е- + -1p- и е+


В таких процессах рождения соблюдаются сразу шесть законов сохранения: массы, заряда, спина, барионного числа (слева внизу у буквы), лептонного числа (обозначения не введены) и четности.

Наблюдаемое во Вселенной отсутствие скопления отрицательных масс объясняется тем, что отрицательные массы взаимно отталкиваются, образуя равномерный фон плотностью


р- = -10-30 г/см3.


Эта плотность настолько ничтожна, что почти не влияет на лабораторные эксперименты. Зато в масштабах галактик ее влияние может быть существенным.

2.6. Уравнения физического вакуума.

В качестве уравнений физического вакуума в теории использованы структурные уравнения Картана геометрии Вайценбека или Вайценбека-Вейля в зависимости от рассматриваемой физической ситуации. По самому названию понятно, что структурные уравнения описывают структуру геометрии, т.е. ее основные геометрические свойства. В случае пространства Вайценбека имеются:


24 уравнения (А) и 20 уравнений (В).


Уравнения (А) представляют собой определение кручения Риччи геометрии Вайценбека, а уравнения (В) устанавливают связь между римановой кривизной и кручением Риччи (помните, в мире ничего не происходит, кроме изменения кривизны и кручения пространства).

Если в уравнениях (А) и (В) выбраны четыре трансляционных координаты х, у, z, x0 = ct и шесть вращательных ф1, ф2, ф3, q1, q2, q3, то тогда уравнения вакуума представляют собой систему 44 нелинейный дифференциальных уравнений первого порядка относительно 24 независимых компонент кручения Риччи и 20 независимых компонент тензора Римана.

Поскольку уравнения (А) и (В) имеют геометрическую природу, то первоначально они не содержат никаких физических констант (они же структурные уравнения). Подобными свойствами обладают вакуумные уравнения Эйнштейна, описывающие гравитационное поле частицы вне массы. Это свойство вакуумных уравнений объясняется тем, что вакуум не может характеризоваться какими-либо конкретными физическими параметрами.

Уравнения вакуума (А) и (В) можно записать в спинорном виде, т.е. заменить входящие в них векторные и тензорные величины спинорами различного ранга.

Тогда уравнения вакуума распадаются на систему уравнений (см. рис. 23), в которую входят:

- геометризированные уравнений Гейзенберга (А);

- геометризированные (включая тензор энергии-импульса) уравнения Эйнштейна (B.1);

- геометризированные уравнения Янга-Миллса (В.2).

Уравнения Гейзенберга были предложены в середине пятидесятых годов Вернером Гейзенбергом для описания структуры элементарных частиц. Используя нелинейные спинорные уравнения с кубической нелинейностью, Гейзенберг с сотрудниками частично описал спектр масс элементарных частиц.

Перейти на страницу:

Похожие книги

Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг
Ткань космоса. Пространство, время и текстура реальности
Ткань космоса. Пространство, время и текстура реальности

Брайан Грин — один из ведущих физиков современности, автор «Элегантной Вселенной» — приглашает нас в очередное удивительное путешествие вглубь мироздания, которое поможет нам взглянуть в совершенно ином ракурсе на окружающую нас действительность.В книге рассматриваются фундаментальные вопросы, касающиеся классической физики, квантовой механики и космологии. Что есть пространство? Почему время имеет направление? Возможно ли путешествие в прошлое? Какую роль играют симметрия и энтропия в эволюции космоса? Что скрывается за тёмной материей? Может ли Вселенная существовать без пространства и времени?Грин детально рассматривает картину мира Ньютона, идеи Маха, теорию относительности Эйнштейна и анализирует её противоречия с квантовой механикой. В книге обсуждаются проблемы декогеренции и телепортации в квантовой механике. Анализируются многие моменты инфляционной модели Вселенной, первые доли секунды после Большого взрыва, проблема горизонта, образование галактик. Большое внимание уделено новому современному подходу к объяснению картины мира с помощью теории струн/М-теории.Грин показывает, что наш мир сильно отличается от того, к чему нас приучил здравый смысл. Автор увлекает всех нас, невзирая на уровень образования и научной подготовки, в познавательное путешествие к новым пластам реальности, которые современная физика вскрывает под слоем привычного нам мира.

Брайан Грин , Брайан Рэндолф Грин

Физика / Образование и наука