Читаем Теория и методика подтягиваний (части 1-3) полностью

Выполняя подтягивания в темпе, соответствующем аэробным возможностям мышц, спортсмен может позволить себе в середине четвёртой минуты начать финишное ускорение, увеличив темп выполнения подтягиваний за счёт сокращения интервалов отдыха в висе. При этом резко возрастает кислородный запрос, активизируется гликолиз и выделяется лактат, но спортсмен уже не обращает на это внимания, выполняя подтягивания в максимально возможном на тот момент темпе. Если к моменту финишного рывка в мышцах спортсмена осталось достаточное количество креатинфосфата, он не будет испытывать затруднений в верхней части траектории движения и закончит упражнение по истечении отведённого времени (при этом ему может потребоваться несколько минут, чтобы отдышаться после окончания упражнения). В противном случае дисбаланс между расходом энергии вследствие увеличения интенсивности работы и её приходом от гликолиза и аэробного окисления быстро приводит к снижению концентрации креатинфосфата, уменьшению уровня АТФ в миофибриллах мышечных волокон и, как следствие, к «зависанию» в верхней части траектории движения и преждевременному окончанию упражнения.


7.4.2 Энергообеспечение динамической работы при подтягивании в низком темпе

Темп подтягиваний будем считать низким, если уровень развития аэробных возможностей мышц спортсмена превышает уровень, необходимый для поддержания выбранного темпа выполнения упражнения.

Допустим, что спортсмен выполняет подтягивания в низком темпе. Первое подтягивание производится за счёт запасов АТФ в мышечных клетках, которых достаточно для мышечной работы в течение 1-2 секунд. Для дальнейшего выполнения работы по подъёму/опусканию туловища должно производиться восполнение запасов АТФ за счёт быстрой креатинфосфатной реакции, во время которой имеющийся в мышечных клетках креатинфосфат вступает во взаимодействие с АДФ (образовавшейся ранее при расщеплении АТФ) с образованием креатина и АТФ. Несколько первых подтягиваний – пока ещё не включился гликолитический механизм ресинтеза - происходят при непрерывном снижении запасов креатинфосфата, но постепенно разворачивающийся гликолиз (время выхода на максимальную мощность которого составляет около 30 секунд) начинает ресинтезировать в единицу времени всё большее количество молекул АТФ, в связи с чем скорость снижения запасов креатинфосфата начинает уменьшаться. Поскольку темп выполнения подтягиваний невысок, скорость образования лактата в мышцах также невелика, поэтому аэробный механизм энергопродукции успевает развернуться раньше, чем произойдёт «закисление» мышц. Если максимальная мощность энергопродукции механизма аэробного окисления достаточно высока, подтягивание переходит в относительно спокойное русло, когда спортсмен длительное время (по меркам подтягиваний) поддерживает ритм выполнения упражнения в режиме «1 подтягивание на 2 цикла дыхания». При этом если за счёт тканевого дыхания в паузе отдыха в висе синтезируется такое количество АТФ, что его хватает не только на обеспечение сокращений мышц, но и на частичное восполнение запасов креатинфосфата, спортсмен не будет испытывать трудностей в верхней части траектории движения и подтягивания будут производиться в течение всех 4 минут. Образовавшийся кислородный долг при этом будет невелик и спортсмену потребуется немного времени на то, чтобы восстановить дыхание после окончания подтягиваний.

Таким образом, при выполнении подтягиваний в медленном темпе аэробное окисление успевает выйти на максимальный уровень энергопродукции, и в этом случае подтягивание в целом производится в смешанном аэробно-анаэробном режиме.

7.4.3 Энергообеспечение динамической работы при подтягивании в повышенном темпе

Темп подтягиваний будем считать повышенным, если уровень развития аэробных возможностей мышц спортсмена недостаточен для поддержания выбранного темпа выполнения упражнения.

Перейти на страницу:

Похожие книги