Важный вывод теории заключается в том, что модель Марковица показывает, что не существует единственного эффективного портфеля, который был бы эффективнее всех остальных. Нет однозначной оценки неопределенности и однозначности выбора решения и соответственно риска. Несмотря на важность для практики выводов модели Марковица, на ее основные постулаты обрушились критики. К новому всегда привыкают не сразу и воспринимают не все, тем более что ряд проблем до сих пор вызывает споры по существу.
Во-первых,
возник вопрос: достаточно ли рациональны инвесторы, чтобы, принимая решения, следовать рекомендациям Марковица? Если в процессе инвестирования интуиция превалирует над расчетом, все эти изыскания могут стать простой потерей времени на сомнительное объяснение того, почему рынки ведут себя так, а не иначе. Ведь ошибки и действия ЛПР носят субъективный и непредсказуемый характер.Во-вторых,
возникает вопрос: является ли дисперсия надлежащей мерой, характеризующей риск? Здесь не все ясно. Если оценивать риск как меру изменчивости не результата, а процесса, модель Марковица будет соответствовать этим условиям. Если инвесторы воспринимают риск как нечто отличное от дисперсии, может быть, следует заменить ее другой величиной, сохранив подход Марковица к оптимизации риска и прибыли. А может, и нельзя.В-третьих:
что будет, если гипотеза Марковица о положительной связи между риском и доходностью не выдержит эмпирической проверки? Если малорисковые ценные бумаги станут систематически приносить высокие прибыли или инвесторы потеряют с ними все, теория становится бесполезной. Как поступать в условиях неопределенности экономических спадов и кризисов на финансовых рынках, когда прошлое не действует, а будущее – неясно?Первая проблема —
техническая – возникла в связи с предположением Марковица о том, что инвесторам будет нетрудно получить оценку нужных для модели исходных данных – ожидаемой доходности, дисперсии и ковариации доходности отдельных пакетов ценных бумаг. Но, как отмечал Кейнс и в своей книге по теории вероятностей, и позже, использование данных о прошлом таит опасность не только в кризисные периоды, но постоянно. И степень доверия не всегда может быть измерена, тем более с точностью, которой требует подход Марковица. Этот подход предполагает использование статистических и прогнозных оценок, но инвесторы знают, что такие расчеты обычно сопровождаются множеством ошибок. К тому же из-за чувствительности процесса к малым расхождениям в оценке исходных данных результат становится еще более спорным.Сам Марковиц был озабочен сложностью практической реализации своих идей. Вместе с учеником, коллегой и соратником Уильямом Шарпом
(W. Sharpe), который позднее разделил с ним Нобелевскую премию, он разработал метод, позволивший обойти процесс вычисления ковариации между отдельными ценными бумагами. Он предложил оценивать дисперсию акции или облигации по отношению к рынку в целом, что значительно упростило задачу. На этой основе У. Шарп разработал получившую широкую известность модель оценки долгосрочных финансовых активов (Capital Asset Pricing Model – САРМ), позволяющую осуществлять оценку ценных бумаг для случая, когда все инвесторы формируют свои портфели в точном соответствии с рекомендациями Марковица. Эта модель использует коэффициент «бета» для описания среднего отклонения курсов отдельных акций или других ценных бумаг относительно рынка в целом за определенный период.Вторая проблема —
математическая – заключалась в том, что портфели и сами рынки ценных бумаг описывались только двумя числами – ожидаемой доходностью и дисперсией. Зависимость именно от этих двух чисел оправдана только в случаях, если распределение доходности ценных бумаг описывается кривой Гаусса. Отклонения от «нормальной» кривой недопустимы, и множество значений с каждой стороны от среднего должно быть распределено строго симметрично.Третья проблема
– методологическая – связана с «хвостами», не входящими в учет в расчетах Марковица. Малая вероятность наступления некоторых событий тем не менее несет скрытую, но очень серьезную угрозу, риски проявления которой требуют специального учета.Часто данные укладываются в нормальное распределение довольно точно, что позволяет на их основе вычислять риск и принимать решения относительно портфеля. В других случаях несовершенство распределения данных стало поводом для разработки новых стратегий, о которых речь пойдет дальше.