Читаем Теория игр в комиксах полностью

Другими словами, любая стратегия с числом, большим, чем 67, доминируема числом 67. Говорят, что стратегия доминируема, если она (в данном случае выбор числа, большего, чем 67) дает игроку меньшие выигрыши, чем другая (выбор числа 67), при любых действиях оппонентов. Соответственно, даже если остальные игроки не рациональны, все стратегии, при которых названы числа больше 67, могут быть исключены.

Если остальные игроки рациональны, то каждый игрок может предполагать, что никто не назовет число больше 67. Таким образом, все догадки от 45 (ближайшее целое число к ⅔ от 67) также исключаются. А оттого, что каждый участник знает, что другие знают, что каждый рационален, все могут быть уверены, что никто не выберет число, большее, чем 45, и никто не выберет число большее, чем 30, которое равно ⅔ от 45.

<p>Трудности, связанные с рациональностью и общеизвестностью рациональности</p>

Тем не менее ноль не оказался выигрышным числом в этом эксперименте в Financial Times. Средним арифметическим было число 19, поэтому победило число 13.

В этом случае принципы рациональности и общеизвестности рациональности не были соблюдены. К примеру, многие участники нерационально выбрали число 100. Даже если бы кто-то ошибочно полагал, что все выберут 100, то оптимальным ответом было бы 67. Такие участники либо не совсем поняли правила игры, либо не смогли посчитать, сколько будет ⅔ от 100.

Концепция рациональности требует от игрока неограниченных когнитивных возможностей. Полностью рациональный человек знает, как решить любую математическую задачу, и может немедленно провести все вычисления, вне зависимости от уровня их сложности. Человеческое поведение можно было бы лучше соотнести с «ограниченной» рациональностью. Это значит, что человеческая рациональность ограничена разрешимостью задачи (то, насколько легко ее можно решить), нашими умственными возможностями, количеством отведенного времени и тем, насколько для нас важно решение этой задачи.

В дополнение к концепции «ограниченной» рациональности, которая имеет большое количество участников, как, например, было в «Игре на угадывание», трудно представить ситуацию, в которой сработал бы принцип общеизвестности рациональности. Даже если все игроки рациональны, вы не выберете 0, если думаете, что остальные игроки не знают, что вы рациональны. Вы бы выбрали число большее, чем 0.

<p>Подъем и крах: применение рациональности на финансовых рынках</p>

«Игра на угадывание» и «Кейнсианский конкурс красоты» объясняют тот интересный факт, что на финансовых рынках даже при условии рациональности всех участников наблюдаются так называемые экономические пузыри – чрезмерно «раздутые» цены. Это связывают с недостатком общеизвестной рациональности.

<p>Игры с одновременными ходами</p>

Часто так случается, что в момент принятия собственного решения игрок не знает, какое действие предпримет соперник. Подобные игры называются играми с одновременными ходами. Иногда игроки принимают решения буквально синхронно, а бывает, проходит какое-то время, но покуда соперники в момент принятия их собственного решения не знают, какой ход выбран другим игроком, мы можем называть их одновременными.

Рассмотрим пример. Кинокомпания Rabbit films сняла захватывающий рождественский фильм о супергероях. Эта лента может быть выпущена в прокат либо в октябре, либо в декабре.

Один из крупнейших конкурентов Rabbit films, кинокомпания Weasel studios, сняла ужасный фильм с огромным бюджетом. По сюжету главные герои этого фильма влюблены друг в друга, но плохая игра актеров не скрывает их взаимной неприязни. Weasel studios также может выпустить фильм в прокат в октябре или в декабре.

Люди чаще ходят в кино в декабре, чем в октябре, поэтому для обеих студий желателен выпуск фильма в декабре. Но оба фильма нацелены на одну аудиторию. Если они появятся в прокате в одно и то же время, то компаниям всеми правдами и неправдами придется бороться за зрителей.

Доход каждой студии зависит не только от даты выхода своего фильма в прокат, но и от даты выхода фильма студии-конкурента. Соответственно, между компаниями наблюдается стратегическое взаимодействие. Выигрыш, который одна студия получит благодаря выбору даты релиза, будет зависеть от выбора соперника.

<p>Стратегическая форма игры</p>

Мы можем проанализировать эту игру, записав возможные действия игроков (релиз фильма в октябре или декабре) и выигрыши (доходы) в таблицу под названием стратегическая (нормальная) форма игры. Стратегическая форма игры – это таблица, известная также как платежная матрица.

Перейти на страницу:

Все книги серии Бизнес в комиксах

Теория игр в комиксах
Теория игр в комиксах

Теория игр представляет собой набор инструментов, применяемых для анализа ситуаций, в которых лучшая стратегия одного человека зависит от действий, в том числе ожидаемых, других людей. Благодаря теории игр мы можем понять, как люди действуют в ситуациях взаимной зависимости. От социальной жизни до бизнес-решений, глобальной политики и эволюционной биологии – во всех этих сферах действуют законы, которые не случайны, а определяются закономерностями вероятности. Мы сталкиваемся с обстоятельствами и действуем исходя из представлений, которые обусловлены именно теорией игр. Изучите ее полностью, чтобы распутать больше головоломок жизни!

Айван Пастин , Тувана Пастин , Тувана Пастин Пастин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочее / Изобразительное искусство, фотография

Похожие книги

Искусство статистики. Как находить ответы в данных
Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.На русском языке публикуется впервые.

Дэвид Шпигельхалтер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное