Читаем Теория относительности Эйнштейна за 1 час полностью

Незадолго до этого в физику вернулось понятие эфира, введенное еще древними греками. Они считали, что эфир – некая нематериальная субстанция, более тонкая и неуловимая, чем воздух, пронизывает все пространство. Впоследствии эфир был забыт, пока к нему не вернулся Рене Декарт, а за ним и Ньютон. Декарт считал, что эфир заполняет Вселенную и, как воздух, образует завихрения и воронки. Ньютон предполагал, что притяжение Земли к Солнцу обусловлено воздействием эфира, но подробно он это предположение не разрабатывал. Физики XIX века считали эфир реально существующей субстанцией, в которой распространяются световые и звуковые волны – так же, как в воде волны распространяются от брошенного в нее камня.

Джеймс Клерк Максвелл объединил все существующие электромагнитные теории, от Эрстеда до Фарадея, и вывел законы, управляющие полями. Все электромагнитные явления были вписаны в стройную систему уравнений, и хотя Максвелл представлял себе поля в виде механических структур, состоящих из силовых завихрений, точность его уравнений была подтверждена дальнейшим развитием науки.

Максвелл сделал еще одно значительное открытие: он доказал, что свет – это электромагнитная волна. Составляя уравнения, он обнаружил, что электромагнитное движение соответствует математической модели волны, звуковой или любой другой. А скорость распространения этой волны – приблизительно 300 тысяч километров в секунду, то есть такая же, как скорость света. «Скорость поля так близка к скорости света, – записал Максвелл, – что мне кажется, есть серьезные причины сделать вывод: сам свет (включая тепловое излучение и другие виды радиации) обладает электромагнитной природой и распространяется в электромагнитном поле в форме волн, подчиняясь законам электромагнетизма».

А вот что об этом открытии написал спустя несколько десятков лет Альберт Эйнштейн: «Представьте себе, что он почувствовал, когда сформулированные им дифференциальные уравнения показали, что электромагнитные поля распространяются в форме волн и со скоростью света! Мало кому в мире повезло испытать подобное».

До открытия Максвелла свет считали явлением, не имеющим никакого отношения к электричеству или магнетизму. А теперь оказалось, что в природе все взаимосвязано сильнее, чем предполагали ученые до этого момента. Таким образом, уравнения Максвелла стали первой попыткой физиков создать унифицированные научные законы.

Понятие поля было удобным с научной точки зрения, уравнения Максвелла позволили решить многие проблемы и поэтому широко использовались физиками и математиками. А между тем существовала серьезная теоретическая проблема: как совместить постулаты молодой науки электродинамики, описанные уравнениями Максвелла, с проверенной временем механикой Ньютона?

В соответствии с уравнениями Максвелла получалось, что скорость света неизменна и всегда составляет 300 тысяч километров в секунду. По законам Ньютона, существует принцип сложения скоростей. То есть, если поместить светящий фонарик на движущийся объект, скорость света увеличится. В реальности же она не увеличивалась. Возникало неразрешимое противоречие между двумя верными теориями. Как его решить? Физики пытались сделать это при помощи изучения свойств эфира. Считалось, что это его неизученные воздействия вносят путаницу.

Проблему разрешил Альберт Эйнштейн. Для этого ему пришлось создать специальную теорию относительности.

<p>Хендрик Лоренц и специальная теория относительности</p>

Голландский физик Хендрик Лоренц еще во время учебы в Лейденском университете показал себя перспективным молодым ученым. Его докторская диссертация, посвященная преломлению и отражению света, была признана научным сообществом выдающейся работой. Тогда он впервые обратился к электромагнитной теории Максвелла и исследовал один из ее аспектов – следствия, касающиеся световых волн. К этой теории в течение своей научной карьеры он вернется еще не раз.

В 1878 году Лоренц написал статью, где высказал передовое по тем временам предположение, что все материальные тела состоят из электрически заряженных частиц, которые находятся в состоянии колебания и взаимодействуют со световыми волнами. Теория об атомном строении вещества тогда уже существовала, но сторонников среди ученых у нее было немного. Лоренц внес свой вклад в доказательство того, что все состоит из молекул и атомов.

Альберт Эйнштейн. 1921 г.

Следующие несколько лет ученый занимался преимущественно кинетической теорией газов. Он исследовал движение молекул, их температуру, кинетическую энергию и соотношение между этими величинами. Потом он снова вернулся к изучению электронов.

Лоренц предположил, что все волны – световые, электрические, радиоволны – возникают в результате колебаний микроскопических заряженных частиц – электронов.

Перейти на страницу:

Все книги серии Наука за 1 час

Похожие книги

100 мифов о Берии. От славы к проклятиям, 1941-1953 гг.
100 мифов о Берии. От славы к проклятиям, 1941-1953 гг.

Само имя — БЕРИЯ — до сих пор воспринимается в общественном сознании России как особый символ-синоним жестокого, кровавого монстра, только и способного что на самые злодейские преступления. Все убеждены в том, что это был только кровавый палач и злобный интриган, нанесший колоссальный ущерб СССР. Но так ли это? Насколько обоснованна такая, фактически монопольно господствующая в общественном сознании точка зрения? Как сложился столь негативный образ человека, который всю свою сознательную жизнь посвятил созданию и укреплению СССР, результатами деятельности которого Россия пользуется до сих пор?Ответы на эти и многие другие вопросы, связанные с жизнью и деятельностью Лаврентия Павловича Берии, читатели найдут в состоящем из двух книг новом проекте известного историка Арсена Мартиросяна — «100 мифов о Берии»Первая книга проекта «Вдохновитель репрессий или талантливый организатор? 1917–1941 гг.» была посвящена довоенному периоду. Настоящая книга является второй в упомянутом проекте и охватывает период жизни и деятельности Л.П, Берия с 22.06.1941 г. по 26.06.1953 г.

Арсен Беникович Мартиросян

Биографии и Мемуары / Политика / Образование и наука / Документальное