Читаем Теория относительности и сверхсветовая скорость полностью

Тогда, если , то . А так как , , использование заданной метрики четырехмерных пространств якобы позволяет получить преобразования координат, совпадающие с теми, что получены при классических преобразованиях Лоренца. Однако такое предположение является в корне ошибочным. Действительно, если подставить в формулы и начальные условия и =x'/t', то получим выражение только для сравнения хода часов: . А сравнение пространственных координат x с x’ принципиально невозможно – по начальным условиям последние всегда равны нулю. И определить, как это предлагается в [8], изменение длины стержня при переходе от одной системы координат к другой также принципиально невозможно, поскольку в развернутой системе координат начальным условием является равенство нулю длины этого стержня.

Отметим, что при данном выводе для четырехмерного пространства используются значения пространственных координат и времени трехмерного пространства, при этом неподвижной для трехмерного пространства системой координат считается та, в которой центр другой также трехмерной системы отсчета и произвольно выбранная точка являются движущимися. Кроме того, из рассмотрения исключены изменения координат, связанные с их параллельным переносом. В этом смысле использование в записи формул собственно обозначений независимых переменных, а не их изменений не должно вводить в заблуждение, что речь идет о преобразованиях координат сравниваемых инерциальных систем отсчета. На самом деле мы имеем дело со сравнениями изменений этих переменных при изменении ориентации одной и той же четырехмерной системы координат, то есть с одним единственным наблюдателем, а не с двумя, как это имеет место для вывода преобразований Лоренца в классическом трехмерном случае.

Альтернативой псевдоевклидовому пространству с его метрикой, задаваемой частично через гиперболические функции, а частично через тригонометрические функции, являются координатные системы, в которых длина четырехмерного отрезка определяется только правилами геометрии Евклида. При этом инвариантный интервал определяется в них как длина вектора, исчисляемая с помощью теоремы Пифагора, в соответствии с выражением:

В этом случае мы, при совпадении центров систем координат, имеем дело с использованием только тригонометрических функций для определения геометрии четырехмерных пространств, развернутых на некоторый угол:









И тогда .

Оба указанных выражения для времени в движущейся системе координат могут быть выведены только с помощью использования факта существования инвариантного интервала, имеющего одну и ту же длину в сравниваемых системах. При этом последнее из них не ограничивает скорость тела скоростью света в вакууме.

Существуют и иные, базирующиеся на понятии об инвариантном времени собственном, способы определения взаимозависимости времен движущейся и неподвижной четырехмерных систем координат, основанные на использовании метода неопределенных коэффициентов (индефинитных преобразований), более известного как преобразования Лоренца ([5], §1):











,



















Но и для этих способов применение разных видов инвариантного времени собственного и , для которых , а , дает те же самые результаты по соотношению хода часов в разных системах координат, что были определены выше и . Как видим, «пространственно-временные» трансляции в результате проведенных преобразований свелись только к временным, а не пространственно- временным трансляциям, как и следовало этого ожидать при принятии условия, что один из наблюдателей видит тело в состоянии покоя (речь конечно же идет о трехмерном пространстве). Причем здесь неподвижной считается система координат, в которой отсутствует движение произвольно выбранной точки в трехмерном подпространстве, но есть движение по временной координате четырехмерного пространства.

Учитывая разночтения в процедуре определения какой из наблюдателей является неподвижным, а какой движущимся, необходимо дополнительно рассмотреть вопрос об определении статуса неподвижности четырехмерных систем отсчета.

Перейти на страницу:

Похожие книги

Синдром гения
Синдром гения

Больное общество порождает больных людей. По мнению французского ученого П. Реньяра, горделивое помешательство является характерным общественным недугом. Внезапное и часто непонятное возвышение ничтожных людей, говорит Реньяр, возможность сразу достигнуть самых высоких почестей и должностей, не проходя через все ступени служебной иерархии, разве всего этого не достаточно, чтобы если не вскружить головы, то, по крайней мере, придать бреду особую форму и направление? Горделивым помешательством страдают многие политики, банкиры, предприниматели, журналисты, писатели, музыканты, художники и артисты. Проблема осложняется тем, что настоящие гении тоже часто бывают сумасшедшими, ибо сама гениальность – явление ненормальное. Авторы произведений, представленных в данной книге, пытаются найти решение этой проблемы, определить, что такое «синдром гения». Их теоретические рассуждения подкрепляются эпизодами из жизни общепризнанных гениальных личностей, страдающих той или иной формой помешательства: Моцарта, Бетховена, Руссо, Шопенгауэра, Свифта, Эдгара По, Николая Гоголя – и многих других.

Альбер Камю , Вильям Гирш , Гастон Башляр , Поль Валери , Чезаре Ломброзо

Философия / Учебная и научная литература / Образование и наука