Читаем Теория относительности — мистификация ХХ века полностью

Длина звена составляет только часть длины звена 3, т. е. при увеличении скорости света относительно движущейся установки первоначальное звено стало «короче» равного ему звена ' на величину

Теперь, чтобы продолжить наблюдение свет от источника И по-прежнему, частоту вращения модулятора следует увеличить согласно условию (6), но в этом случае вновь нарушится наблюдение источника И'.

Такими должны быть экспериментальные результаты по измерению скорости света при взаимном движении источника и приемника в случае подчинения движения света классическому закону сложения скоростей.

Интересен смысл формул (4) и (8). Звено в системе наблюдателя остается таким же, как и в системе излучателя. Но при измерении его длины, так же как и длины аналогичного ему звена ' от неподвижного источника, по времени прохождения мимо наблюдателя звено становится «длиннее», когда источник удаляется, или «короче», в случае приближения, равного ему звена '!

Прямое измерение линейных размеров проводится методом наложения эталона длины на протяженное тело. В случае измерения длины движущегося объекта (потока света, поезда) вступает в силу косвенный способ — вычисление длины по времени прохождения тела при известной скорости.

Эффект изменения длины звена как следствие изменившейся величины скорости света является кажущимся, он вызван способом нашего измерения. В дальнейшем изложении термины изменения длины звена применяются с учетом данного замечания.

Для наглядности рассмотрим пример. Два поезда на параллельных путях движутся в одном направлении. В течение одной минуты мимо наблюдателя в первом поезде прошло 20 вагонов, а во втором 15. Это может быть результатом двух причин: разными скоростями поездов или различным типом вагонов. Предположим, что тип вагонов один и тот же, тогда наше наблюдение есть результат разной скорости поездов.

Сравнивая планируемые измерения с фактически проведенными наблюдениями и опытами, находим, что скорость света действительно подчиняется классическому закону сложения скоростей.

<p>4. Астрономические наблюдения и лабораторные эксперименты, подтверждающие классический закон сложения скоростей для света</p><p>4.1. Наблюдения Олафа Рёмера</p>

Природа облегчила нам проведение так необходимого эксперимента, предоставила модулированный источник света и движущуюся платформу.

В 1676 г. в Парижской обсерватории датский астроном О. Рёмер, наблюдая за планетой Юпитер и его спутниками, заметил, что время полного обращения спутника Ио вокруг Юпитера, определяемое по моменту выхода (или входа) спутника из тени Юпитера, периодически изменяется. Периодичность оказалась связанной с движением Земли по орбите вокруг Солнца [5, с. 414].

В момент максимального сближения Земли с Юпитером (рис. 4), в положении I, период Ио — Т1 = 1,77 суток = 1,5·105 сек.

Рис. 4

При движении Земли к положению II период Т1 начинает увеличиваться и достигает своего максимума T2 в положении II, после чего уменьшается и становится опять равным Т1 в положении III, т. е. Т= Т3. Но уменьшение здесь не заканчивается, а продолжается до положения IV, где период Т4 приобретает минимальное значение. Затем происходит его увеличение до величины в первоначальном положении I. Максимальное приращение периода Ио Т2 = 15 с, примерно такое же и максимальное уменьшение — Т4 = 15с. Во всех остальных промежуточных положениях Земли на орбите изменения периода Ио пропорциональны составляющей скорости Земли относительно Юпитера по прямой Земля-Юпитер. Период увеличивается, если Земля удаляется от Юпитера, и уменьшается при приближении к Юпитеру. Так как угловая скорость обращения Юпитера вокруг Солнца много меньше угловой скорости Земли (год Юпитера равен почти 12 земным годам), то в течение года взаимное положение Земли и Юпитера меняется незначительно и не оказывает заметного влияния на описываемый эффект.

Сравнивая два наблюдения периодов Ио в точках I и III, О. Рёмер увидел, что периоды их равны, но начало периода в положении III опаздывает, по его измерениям, на 22 мин по сравнению со случаем, если бы продолжительность периодов не менялась в течение времени между наблюдениями. Астроном определил, что запаздывание начала периода Ио в точке III вызвано тем, что свет от спутника должен пройти до наблюдателя дополнительное расстояние, равное диаметру земной орбиты. Делением данного расстояния на время опоздания Рёмер впервые в мире вычислил скорость света.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука