Совершенно такое же уравнение может быть написано и относительно другой системы координат
Оба уравнения равноправны, так как описывают одно и то же явление в одном и том же пространстве. Поэтому они должны быть совместимы. Подставляя в уравнение (4) формулы преобразования Галилея (1) и (2) и решая его совместно с (3) относительно скорости света в «штрихованной» системе, получим основное выражение классической теории относительности;
где
угол между векторами
Равенство (5) есть ни что иное, как известная формула векторного сложения скоростей, утверждающее, что скорость света складывается с любой другой скоростью, участвующей в рассмотрении, по общим правилам механики Ньютона. Как и скорость любых других тел, она
Но ничто, кроме здравого смысла, не мешает нам предположить, что скорость света относительно любой системы координат всегда одна и та же и не зависит ни от ее движения, ни от движения источника в ней. Это предположение выражается постулатом Лоренца, согласованным с его теорией строения вещества, но и для нее необязательным:
Формулы (6) принадлежат к группе преобразования, названной именем Лоренца. Релятивисты считают ее единственно правильной и ссылаются при этом на то, что только она будто бы приводит к единству законов электродинамики движущихся и неподвижных тел. Это не так, как будет показано ниже.
Здесь же мы хотим еще раз подчеркнуть, что все преобразования координат (систем отсчета) производятся в одном и том же трехмерном пространстве, в котором существуют и движутся и те предметы, которые мы изучаем, и мы сами. Никакого другого пространства в мире нет. В связи с этим овеществление координат, проповедуемое релятивистами, неизбежно приводит к излюбленной теме многих фантастических романов: к множеству миров, совпадающих по трем измерениям, но смещенных относительно друг друга в четвертом измерении. Только так можно истолковать и следующие выражения из широко распространенной книги В. А. Угарова «Специальная теория относительности» [7], хотя это и не роман:
1) «Приборы, установленные в разных системах отсчета, дадут различные результаты…» (с. 18), вместо: «Приборы дадут различные результаты в зависимости от примененной в них системы отсчета, для которой они градуированы».
2) «Однако, во всякой системе отсчета, движущейся ускоренно относительно любой инерциальной системы координат… будут обнаруживаться отклонения от законов Ньютона» (стр. 23), вместо: «Если координатная система движется ускоренно, то приборы будут отмечать и это ускорение в полном соответствии с законами Ньютона».
3) «Возьмем в каждой из систем отсчета
В классической физике такой вопрос вообще не может возникнуть: реальные линейки не меняют своей длины в зависимости от того, кто и откуда на них смотрит. Но, с точки зрения Угарова, это не только возможно, но и обязательно!
И сам Эйнштейн писал ([3], с. 187), что «вопрос о том, реально Лоренцево сокращение или нет, не имеет смысла: сокращение не является реальным для наблюдателя, движущегося вместе с телом, однако оно реально, так как оно может быть доказано физическими средствами для наблюдателя, не движущегося вместе с телом».
Не напрягайтесь, читатель, в мысленном эксперименте, так как придется согласиться с Эйнштейном в главном: здесь действительно смысла нет.
Теория относительности Эйнштейна, опирающаяся на преобразование Лоренца, возлагает вину за то, что уравнения Максвелла не охватывают область высоких скоростей, не на автора этой теории, а на формулы преобразования Галилея, предложенные свыше 300 лет тому назад и прочно вошедшие во все труды по аналитической геометрии.
Однако преобразования Лоренца являются такими же произвольными, как и постулат Эйнштейна о независимости скорости света от движения источника. Канонизация же II постулата Эйнштейна в физике привела к повсеместному отрицанию любого утверждения, противоречащего ему.
Приведем один из наиболее простых примеров использования этого приема, заимствованный, из книги М. Боулера «Гравитация и относительность» [8]:
«Рассмотрим… электрическое поле плоской волны:
Ее фаза равна
<…>Фаза должна быть инвариантом, и на этом основании можно определить, что происходит с
Подставив сюда
откуда