Читаем Теория струн и скрытые измерения вселенной полностью

Однако если требуется, чтобы некоторые симметрии были калибровочными, то из расчетов Янга и Миллса следует, что для этого необходимо ввести в теорию нечто дополнительное, некий внешний фактор. Этим «нечто» могут быть калибровочные поля. В Стандартной модели калибровочные поля соответствуют калибровочным симметриям SU(3)xSU(2)xU(1), это означает по ассоциации, что калибровочные поля соответствуют трем взаимодействиям, которые включены в состав модели: сильному, слабому и электромагнитному. Между прочим, Янг и Миллс не были первыми, кто разработал калибровочную теорию U(1), описывающую электромагнетизм, — это было сделано за десятилетие до них. Но они были первыми, кто разработал калибровочную теорию для SU(2), которая показала путь разработки SU(n) теорий, для любого n больше двух, включая SU(3).

Введение калибровочных полей позволило получить теорию с калиброванными симметриями, что в свою очередь позволяет сохранять инвариантность физики, даже когда операции симметрии применяют раздельно. Физики создали Стандартную модель такой не потому, что она поразила их своей элегантностью и эстетической привлекательностью, а потому, что из экспериментов следовало, что так работает природа. Иными словами, Стандартная модель является калибровочной теорией по эмпирическим, а не эстетическим причинам.

Хотя физики обычно рассуждают в терминах калибровочных полей, математики часто выражают те же идеи в терминах расслоений, что является математическим способом представления полей, связанных с тремя взаимодействиями. Струнные теоретики стирают границу между физикой и математикой, а расслоения играют роль гетеротических конструкций, которых мы кратко коснемся.

Рис. 9.1. Чжэньнин Янг и Роберт Миллс, авторы теории Янга-Миллса (Правила Янга)

Перед тем как перейти к ним, необходимо объяснить, каким образом многообразия Калаби-Яу связаны с калибровочными полями, которые математики называют расслоениями. Поля, которые мы видим, — четырехмерная гравитация и калибровочные поля SU(3)xSU(2)xU(1), связанные с другими тремя силами, бесспорно, существуют в четырехмерной области, в которой, если верить нашим наблюдениям, обитаем и мы. Калибровочные поля фактически существуют в десяти измерениях, которые описывает теория струн. Компонент, лежащий в шести компактифицированных измерениях Калаби-Яу, дает начало четырехмерным калибровочным полям нашего мира и приводит к сильному, слабому и электромагнитному взаимодействиям. Правильнее было бы сказать, что внутренняя структура Калаби-Яу фактически рождает эти взаимодействия, — собственно, это и следует из теории струн.

До сих пор мы говорили о симметрии без упоминания проблемы, с которой столкнулись создатели модели, а именно с тем, что называют нарушением симметрии. В гетеротической версии теории струн мы обсуждали десятимерное пространство-время, с которого мы начинаем, содержащее нечто, что мы называем Е8xЕ8-симметрией. Е8 — это 248-мерная группа симметрии, которую можно считать, в свою очередь, калибровочным полем с 248 компонентами (подобно тому как вектор, указывающий некоторое произвольное направление в трехмерном пространстве, имеет три компоненты, обозначаемые x, y и z). Е8xЕ8 — это более обширная группа из 496 компонентов (248 + 248), но для практических целей можно игнорировать второе Е8. Конечно, даже 248 симметричных измерений составляют проблему для вывода Стандартной модели, которая имеет только двенадцать симметричных измерений. Значит, нам нужно каким-то способом «отломать» лишние измерения у 248-мерной Е8-группы, уменьшив их количество до двенадцати.

Давайте вернемся к нашему примеру двухмерной сферы, или шара, обладающей вращательной симметрией в трех измерениях и принадлежащей к симметричной группе SO(3). Здесь термин «SO» — это сокращение от «special orthogonal group» (специальная ортогональная группа), поскольку она описывает вращение вокруг взаимно перпендикулярных осей. Можно взять сферу и начать вращать ее вокруг любой из трех осей — x, y и z, — и она всегда будет оставаться той же самой сферой. Но можно нарушить симметрию, если потребовать, чтобы одна точка всегда отображалась сама на себя. На нашей планете можно было бы в качестве такой точки выбрать Северный полюс. После этого у нас останется только один набор преобразований поворота, а именно повороты относительно оси, проходящей через Северный и Южный полюсы, которые оставляют точку Северного полюса неподвижной. В результате трехмерная симметрия шара нарушается и превращается в одномерную симметрию U(1).[160]

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже