Читаем Теория струн и скрытые измерения вселенной полностью

Для того чтобы количественно оценить степень близости определенного многообразия к евклидовому пространству, необходимо знать его метрику. В плоском пространстве с взаимно перпендикулярными координатными осями для расчета расстояний можно использовать теорему Пифагора. В искривленных пространствах дело обстоит несколько сложнее, поскольку оси координат в этом случае могут уже не быть взаимно перпендикулярными, что приводит к необходимости использования модифицированной версии теоремы Пифагора. Для расчета расстояний в искривленных пространствах необходимо знать метрические коэффициенты — набор чисел, изменяющийся от точки к точке и зависящий от ориентации координатных осей. Выбор той или иной ориентации осей ведет к возникновению разных наборов метрических коэффициентов. При этом значение имеют не столько величины этих коэффициентов, которые во многом произвольны, сколько характер их изменения при переходе от одной точки многообразия к другой. Это дает возможность узнать положение различных точек по отношению друг к другу и таким образом свести воедино все, что касается геометрии данного многообразия. Как уже было сказано в предыдущих главах, для описания четырехмерного пространства необходимы десять метрических коэффициентов. На самом деле коэффициентов всего шестнадцать, поскольку метрический тензор в данном случае представляет собой матрицу 4x4. Однако метрический тензор всегда симметричен относительно диагонали, проходящей из левого верхнего угла матрицы в правый нижний. Таким образом, четыре числа лежат непосредственно на диагонали матрицы и еще два одинаковых набора из шести чисел каждый лежат по разные стороны от нее. За счет наличия симметрии вместо шестнадцати чисел можно рассматривать только десять: четыре на диагонали и шесть — по одну сторону от нее.

Это, впрочем, еще не объясняет механизм работы метрики. Рассмотрим весьма простой пример, имеющий место для одного комплексного или двух вещественных измерений, — метрику Пуанкаре единичного круга, центр которого находится в точке плоскости с координатами (0, 0). Этот круг представляет собой набор точек (x, y), удовлетворяющих неравенству x2 + y2 < 1. Формально такой круг называют «открытым», поскольку он не включает в себя свою границу — окружность, определяемую выражением x2 + y2 = 1. Поскольку рассматриваемый случай относится к двум измерениям, тензор метрики Пуанкаре представляет собой матрицу 2x2. В каждой из ячеек этой матрицы стоит коэффициент вида Gij, где i — номер строки, j — номер столбца. Таким образом, матрица будет иметь вид:

G11 G12

G21 G22

За счет симметрии, о которой шла речь выше, G12 будет равно G21. Для метрики Пуанкаре эти два «недиагональных» элемента по определению равны нулю. Равенство двух других элементов — G11 и G22 не обязательно, но в случае метрики Пуанкаре оно имеет место: оба эти элемента по определению равны 4/(1-x2-y2)2. Любой паре координат x и y, выбранной внутри единичного круга, метрический тензор ставит в соответствие определенный набор коэффициентов. Так, например, для x = 1/2 и y = 1/2 элементы G11 и G22 будут оба равны 16, оставшиеся же два коэффициента равны нулю для любой точки единичного круга.

Что же делать дальше с полученными числами? И как эти коэффициенты соотносятся с расстоянием? Нарисуем внутри единичного круга небольшую кривую, однако рассмотрим ее не как неподвижный объект, а как траекторию частицы, движущейся из точки А в точку В. Чему же равна длина этой траектории для данной метрики Пуанкаре?

Для того чтобы ответить на этот вопрос, рассмотрим кривую s и разделим ее на крошечные линейные участки — настолько крошечные, насколько это только можно представить, — и сложим их длины между собой. Длину каждого из линейных участков можно найти при помощи теоремы Пифагора. Для начала определим величины xy и s параметрически, то есть представим их как функции времени: x = X(t)y = Y(t) и s = S(t). Производные этих функций — X'(t) и Y'(t) — можно рассматривать как катеты прямоугольного треугольника; их подстановка в теорему Пифагора ([X'(t)]2+[Y'(t)]2) дает значение производной S'(t). Интегрирование от А до В позволяет определить длину всей кривой. В свою очередь каждый линейный сегмент представляет собой касательную к кривой, называемую в данном случае касательным вектором. Однако поскольку кривая находится на круге Пуанкаре, то перед интегрированием полученный результат нужно умножить на значение метрики ([X'(t)]2+[Y'(t)]2)x(4/(1-x2-y2)2), чтобы ввести поправку на кривизну.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже