Читаем Теория струн и скрытые измерения Вселенной полностью

Вернемся к нашим размерностям. Как уже было сказано, в топологии существуют только две фундаментальные одномерные формы: прямая линия, которая идентична любой волнистой линии, и окружность, которая идентична любой петле – вытянутой, волнистой или даже имеющей форму квадрата – любой, какую только можно себе представить. Двухмерные пространства также можно разделить на два фундаментальных типа: это либо сферы, либо бублики. Тополог рассматривает любую двухмерную поверхность как сферу в том случае, если в ней нет дырок, при этом включая в эту категорию такие привычные нам геометрические тела, как кубы, призмы, пирамиды и даже похожие на дыни объекты, которые носят название эллипсоидов.

Вся разница между бубликом и сферой состоит исключительно в наличии дырки в первом и отсутствии ее во второй: неважно, насколько сильно вы деформировали сферу, – пока вы не проделаете в ней дырку, вы ни за что не получите из нее бублик, и наоборот. Другими словами, нельзя проделать ни одной новой дырки в объекте или разорвать его каким-то другим образом, не изменив при этом его топологию. И наоборот, тополог считает две формы функционально эквивалентными, если, вылепив их из пластичной глины или пластилина, можно трансформировать одну в другую, только сжимая и растягивая, но не разрывая ее.

Рис. 1.1.В топологии существуют два вида одномерных пространств, принципиально отличных друг от друга: линия и окружность. Можно преобразовать окружность в петлю любой формы, но превратить окружность в линию, не разрезая ее, невозможно. Двухмерные поверхности, являющиеся ориентируемыми, – что означает, что они, подобно мячу, имеют две поверхности, а не одну, как лента Мёбиуса, – могут быть классифицированы по их роду,грубо говоря, по количеству дырок в данной поверхности. Так, сфера, имеющая род 0, в которой нет дырок, принципиально отлична от бублика, имеющего род 1 и, соответственно, одну дырку. Как и в случае с окружностью и прямой, невозможно превратить сферу в бублик, не проделав в ней дырку

Бублик с одной дыркой называется тором, но бубликоподобные поверхности могут иметь любое число дырок. Двухмерные поверхности, которые являются одновременно компактными (замкнутыми и ограниченными в пространстве) и ориентируемыми (имеющими две стороны), можно классифицировать по числу дырок в них, или по роду. Объекты, имеющие различный вид в двух измерениях, считаются топологически идентичными, если они относятся к одному и тому же роду.

Сделанное выше утверждение о существовании только двух возможных двухмерных форм – бублика и сферы, справедливо лишь в случае, когда мы ограничиваемся ориентируемыми поверхностями, а именно о таких поверхностях мы в основном и будем говорить в этой книге. Мяч, например, имеет две стороны – внутреннюю и внешнюю, и то же самое справедливо в отношении велосипедной камеры. Но существуют и более сложные поверхности – односторонние, или «неориентируемые», такие как бутылка Клейна или лента Мёбиуса, для которых указанное утверждение не верно.

Рис. 1.2.В топологии сфера, куб и тетраэдр (как и многие другие геометрические тела) рассматриваются как эквивалентные, поскольку они могут быть получены друг из друга путем деформации, растяжения или сжатия без разрывов и разрезов

Рис. 1.3.Поверхности нулевого, первого, второго и третьего рода; термин «род» означает число дырок

Когда количество измерений превышает два, число возможных форм резко возрастает. Рассматривая пространства с большим числом измерений, мы должны допускать движения в тех направлениях, которые мы не в состоянии наглядно себе представить. Замечу, что речь идет не о тех направлениях, которые лежат, скажем, между направлением на север и направлением на запад (например, на северо-запад) и даже не о направлениях типа «к северу через северо-запад». Речь о таких направлениях, которые можно указать, только выйдя за пределы привычной нам системы координат, держа путь вдоль оси, которую только предстоит нарисовать.

Один из первых крупных прорывов на пути к изображению многомерных пространств был совершен в XVII веке великим Рене Декартом, французским математиком, философом, ученым и писателем. Впрочем, для меня он в первую очередь – геометр. В числе прочих вкладов в науку Декарт показал, что мышление на языке координат гораздо продуктивнее геометрических построений.

Система координат, которую он создал и которая сейчас носит название декартовой, объединила алгебру и геометрию. В узком смысле Декарт показал, что, построив три оси ( xyи z), перпендикулярные друг другу и пересекающиеся в одной точке, можно точно указать положение любой точки в трехмерном пространстве, используя три числа: xyи z, называемые координатами. Но на самом деле вклад Декарта гораздо шире – одним блестящим жестом он значительно расширил область исследований геометрии. Применение системы координат сделало возможным использование алгебраических уравнений для описания сложных многомерных геометрических фигур, которые нелегко себе представить.

Перейти на страницу:

Похожие книги

История инженерной деятельности
История инженерной деятельности

В. В. Морозов, В. И. НиколаенкоИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИМинистерство образования и науки УкраиныНациональный технический университет«Харьковский политехнический институт»Курс лекций для студентов всех специальностей дневного и заочного обученияУТВЕРЖДЕНО редакционно-издательским советом университетаХарьков 2007В учебном пособии анализируется содержание инженерной деятельности, рассматривается развитие с древнейших времен для нашего времени.Пособие предназначено для студентов дневной и заочной форм обучения, а также всех, кто интересуется историей развития техники.Історія інженерної діяльності.Курс лекцій для студентів усіх спеціальностей денного та заочного форм навчання – В.В.Морозов, В.І.Ніколаєнко – Харків: НТУ "ХПІ", 2007. – 336 с. – Рос.мовою.В учбовому посібнику аналізується зміст інженерної діяльності, розглядається розвиток техніки з найдавніших часів до сучасності.Посібник призначено для студентів денної та заочної форм навчання, а також для усіх, хто цікавиться історією розвитку техніки.© В.В.Морозов, В.І.Ніколаєнко, 2007 р.

В. В. Морозов , В. И. Николаенко , Виталий Иванович Николаенко , Михаил Давыдович Аптекарь , Султан Курбанович Рамазанов

Технические науки / Учебники и пособия ВУЗов / Образование и наука
Чудо-оружие СССР. Тайны советского оружия
Чудо-оружие СССР. Тайны советского оружия

В XX веке в нашей стране в обстановке строжайшей секретности были созданы уникальные системы вооружения, действие которых иной раз более впечатляло, чем фантастические романы того времени. О некоторых из них и пойдет речь в этой книге. Автор не счел нужным что-либо преувеличивать или недоговаривать. В книге объективно представлены все достоинства, недостатки и перспективы возможного применения того или иного типа оружия. Читатель узнает, как маршал Тухачевский готовился к «войне роботов», как и почему взлетели на воздух дома на Крещатике в сентябре 1941 г., об испытаниях самолета-невидимки и его связи с Филадельфийским экспериментом, об атомных и ракетных секретах Лаврентия и Серго Берия, о работах по созданию флота из летающих лодок с атомными двигателями, способных доставить термоядерные заряды в любую точку земного шара, и о многом другом.

Александр Борисович Широкорад

История / Технические науки / Образование и наука