Читаем Теория струн и скрытые измерения Вселенной полностью

Рис. 7.9.Гипотеза SYZ, названная в честь ее авторов, Эндрю Строминджера, автора данной книги (Шинтана Яу) и Эрика Заслоу, предлагает способ разложения сложного пространства, такого как многообразие Калаби-Яу, на составные части, или подмногообразия. Хотя мы не в силах изобразить шестимерное многообразие Калаби-Яу, вместо этого мы можем нарисовать двухмерное (имеющее два вещественных измерения) пространство Калаби-Яу, представляющее собой бублик с плоской метрикой. Подмногообразия, образующие бублик, являются окружностями, и их порядок определяется вспомогательным пространством В, также представляющим собой окружность. Каждая точка на В соответствует определенной окружности; и все многообразие – или бублик – состоит из набора подобных окружностей

Рис. 7.10. Гипотеза SYZ предоставляет новый взгляд на K3-поверхности, являющиеся классом четырехмерных многообразий Калаби-Яу. Согласно гипотезе SYZ, мы можем создать K3-поверхность, взяв двухмерную сферу, являющуюся вспомогательным пространством в данном примере, и прикрепив к каждой ее точке двухмерный бублик

Именно здесь и проявляется зеркальная симметрия. Работая над первоначальной идеей SYZ, оксфордский геометр Найджел Хитчин, Марк Гросс и некоторые из моих бывших студентов (Найчанг Линг, Вейдонг Руан и другие) построили следующую картину. Рассмотрим многообразие X, состоящее из набора подмногообразий, перечисленных в пространстве модулей В. Теперь возьмем подмногообразия, имеющие радиус r, и заменим его на обратную величину 1/r. Одной из неожиданных, хотя и прекрасных особенностей теории струн, не присущей классической механике, является возможность провести подобную замену, а именно перевернуть радиус цилиндра, сферы или пространства, не изменив при этом их физические характеристики. Движение точечной частицы по окружности радиуса rможно описать при помощи ее момента импульса, который при этом квантуется – принимает строго определенные значения, кратные постоянной Планка – h. Струна, движущаяся по окружности, также обладает моментом импульса, но, в отличие от точечной частицы, она может наматываться на окружность один или более раз. Число оборотов струны вокруг окружности называется ее топологическим числом. Итак, движение струны, в отличие от движения частицы, характеризуется двумя квантующимися величинами: ее моментом импульса и ее топологическим числом. Рассмотрим струну с топологическим числом, равным двум, и моментом импульса, равным нулю, движущуюся по окружности радиуса r, и струну с топологическим числом, равным нулю, и моментом импульса, равным двум (то есть 2h), движущуюся по окружности радиуса 1/r. Хотя описания этих двух случаев звучат по-разному и вызывают в воображении разные картины, с математической точки зрения оба случая идентичны и приводят к одним и тем же физическим характеристикам. Это свойство известно как T-дуальность. «Эта эквивалентность переходит с окружностей на их [декартовы] произведения – торы», – говорит Заслоу.[114] Буква T в названии «T-дуальность» и означает «торы». Строминджер, Заслоу и я сочли эту дуальность столь важной для зеркальной симметрии, что назвали нашу первую статью, посвященную гипотезе SYZ, «T-дуальность – это зеркальная симметрия».

Приведу простой пример, показывающий тесную взаимосвязь T-дуальности и зеркальной симметрии. Пусть многообразие Мпредставляет собой тор – прямое произведение двух окружностей радиуса r. Многообразие, зеркальное к нему, М', также является тором – произведением двух окружностей радиуса 1/r. Представим себе теперь, что rчрезвычайно мало. Столь крошечный размер многообразия Мприводит к тому, что для понимания связанной с ним физики нужно принимать во внимание квантовые эффекты. Таким образом, сложность расчетов многократно возрастает. Извлечь же физические характеристики из зеркального многообразия М', намного легче, поскольку для очень малого rвеличина 1/rбудет очень велика, и квантовые эффекты можно свободно проигнорировать. Итак, зеркальная симметрия под личиной T-дуальности может существенно упростить ваши расчеты и жизнь в целом.

Перейти на страницу:

Похожие книги

История инженерной деятельности
История инженерной деятельности

В. В. Морозов, В. И. НиколаенкоИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИМинистерство образования и науки УкраиныНациональный технический университет«Харьковский политехнический институт»Курс лекций для студентов всех специальностей дневного и заочного обученияУТВЕРЖДЕНО редакционно-издательским советом университетаХарьков 2007В учебном пособии анализируется содержание инженерной деятельности, рассматривается развитие с древнейших времен для нашего времени.Пособие предназначено для студентов дневной и заочной форм обучения, а также всех, кто интересуется историей развития техники.Історія інженерної діяльності.Курс лекцій для студентів усіх спеціальностей денного та заочного форм навчання – В.В.Морозов, В.І.Ніколаєнко – Харків: НТУ "ХПІ", 2007. – 336 с. – Рос.мовою.В учбовому посібнику аналізується зміст інженерної діяльності, розглядається розвиток техніки з найдавніших часів до сучасності.Посібник призначено для студентів денної та заочної форм навчання, а також для усіх, хто цікавиться історією розвитку техніки.© В.В.Морозов, В.І.Ніколаєнко, 2007 р.

В. В. Морозов , В. И. Николаенко , Виталий Иванович Николаенко , Михаил Давыдович Аптекарь , Султан Курбанович Рамазанов

Технические науки / Учебники и пособия ВУЗов / Образование и наука
Чудо-оружие СССР. Тайны советского оружия
Чудо-оружие СССР. Тайны советского оружия

В XX веке в нашей стране в обстановке строжайшей секретности были созданы уникальные системы вооружения, действие которых иной раз более впечатляло, чем фантастические романы того времени. О некоторых из них и пойдет речь в этой книге. Автор не счел нужным что-либо преувеличивать или недоговаривать. В книге объективно представлены все достоинства, недостатки и перспективы возможного применения того или иного типа оружия. Читатель узнает, как маршал Тухачевский готовился к «войне роботов», как и почему взлетели на воздух дома на Крещатике в сентябре 1941 г., об испытаниях самолета-невидимки и его связи с Филадельфийским экспериментом, об атомных и ракетных секретах Лаврентия и Серго Берия, о работах по созданию флота из летающих лодок с атомными двигателями, способных доставить термоядерные заряды в любую точку земного шара, и о многом другом.

Александр Борисович Широкорад

История / Технические науки / Образование и наука