Читаем Теория струн и скрытые измерения Вселенной полностью

Аналогичная ситуация наблюдается с классической геометрией, поскольку, по мнению гарвардского физика Кумрун Вафы, она дает только приближенное, а не точное или фундаментальное описание природы. Хотя справедливости ради стоит сказать, что это приближенное описание служит хорошим фундаментом и почти безупречно описывает нашу Вселенную, за исключением планковского масштаба (10- 33см) – области, в которой на стандартную геометрию накладываются квантовые эффекты и выполнение простых измерений становится невозможным.

Главная трудность в решении задач на очень мелких масштабах связана с принципом неопределенности Гейзенберга, который делает невозможной локализацию отдельной точки или точную фиксацию расстояния между двумя точками. Поэтому объекты планковского размера не стоят на месте, а постоянно колеблются, изменяя свои параметры, включая местоположение, размер и кривизну. Если классическая геометрия говорит нам, что две плоскости пересекаются по линии, а три плоскости пересекаются в точке, то с квантовой точки зрения мы должны представить себе три плоскости, пересекающиеся в окрестности некоей сферы, которая охватывает область возможных положений для этой точки.

Для исследования Вселенной на уровне скрытых измерений или отдельных струн нам необходим новый вид геометрии, иногда называемой квантовой геометрией, способной работать как на самых больших, так и на самых маленьких масштабах, которые только можно вообразить. Геометрия такого рода должна быть совместима с общей теорией относительности на больших масштабах и квантовой механикой на малых масштабах и совпадать там, где обе теории пересекаются. По большей части квантовая геометрия пока не существует. Она гипотетична, хотя и важна, скорее надежда, чем реальность, название для поиска четко определенной математической теории. «Мы не знаем, как такая теория будет выглядеть или как она должна называться, – говорит Вафа. – Для меня не очевидно, что она должна называться геометрией».[280] Но независимо от названия, мы считаем, что геометрия, в том виде как она существует сейчас, исчерпала себя и ее необходимо заменить на что-то более мощное – на геометрию, которой мы еще не знаем. Это путь всех наук, как и должно быть, поскольку застой означает смерть.

«Мы всегда ищем области, в которых наука оказывается бессильной, – объясняет физик Амстердамского университета Роберт Дикграаф. – Геометрия тесно связана с теорией Эйнштейна, и когда теория Эйнштейна испытывает потрясения, то геометрию ждет та же судьба. В конечном счете, уравнения Эйнштейна необходимо заменить так же, как они в свое время заменили уравнения Ньютона, и геометрия пойдет тем же путем».[281]

Но не будем перекладывать всю ответственность на геометрию, потому что проблема в большей степени связана с физикой, чем с математикой. Прежде всего, планковский масштаб, где начинаются все вышеупомянутые неприятности, вообще не является математической концепцией.

Это физическаяшкала длины, массы и времени. Даже тот факт, что классическая геометрия не работает на планковском масштабе, не означает, что что-то не так с математикой как таковой. Методы дифференциального исчисления, лежащие в основе римановой геометрии, которая, в свою очередь, служит основой для общей теории относительности, не вдруг перестают работать при критическом масштабе длины. Дифференциальная геометрия предназначена по самой своей сути для работы на бесконечно малых длинах, которые можно устремлять к нулю так близко, как вы пожелаете. «У нас нет причин полагать, что экстраполяция общей теории относительности до мельчайших пространственных масштабов будет проблемой с точки зрения математики, – говорит Дэвид Моррисон, математик Калифорнийского университета в Санта-Барбаре. – Здесь нет реальной проблемы и с точки зрения физики, за исключением того, что мы знаем, что это неверно».[282]

В общей теории относительности метрика, или функция, длины говорит нам о кривизне в каждой точке. На очень малых масштабах длины метрические коэффициенты колеблются в широких пределах, а это означает, что длина и кривизна также будут сильно колебаться. Другими словами, геометрия будет испытывать такие сильные сдвиги, что вряд ли будет иметь смысл называть ее геометрией. Это похоже на железнодорожную систему, где рельсы могут уменьшаться, удлиняться и искривляться как угодно, – такая железная дорога никогда не доставила бы вас к месту назначения или вы прибыли бы туда не по расписанию. Как говорится, это не для железной дороги и не для геометрии.

Перейти на страницу:

Похожие книги

История инженерной деятельности
История инженерной деятельности

В. В. Морозов, В. И. НиколаенкоИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИМинистерство образования и науки УкраиныНациональный технический университет«Харьковский политехнический институт»Курс лекций для студентов всех специальностей дневного и заочного обученияУТВЕРЖДЕНО редакционно-издательским советом университетаХарьков 2007В учебном пособии анализируется содержание инженерной деятельности, рассматривается развитие с древнейших времен для нашего времени.Пособие предназначено для студентов дневной и заочной форм обучения, а также всех, кто интересуется историей развития техники.Історія інженерної діяльності.Курс лекцій для студентів усіх спеціальностей денного та заочного форм навчання – В.В.Морозов, В.І.Ніколаєнко – Харків: НТУ "ХПІ", 2007. – 336 с. – Рос.мовою.В учбовому посібнику аналізується зміст інженерної діяльності, розглядається розвиток техніки з найдавніших часів до сучасності.Посібник призначено для студентів денної та заочної форм навчання, а також для усіх, хто цікавиться історією розвитку техніки.© В.В.Морозов, В.І.Ніколаєнко, 2007 р.

В. В. Морозов , В. И. Николаенко , Виталий Иванович Николаенко , Михаил Давыдович Аптекарь , Султан Курбанович Рамазанов

Технические науки / Учебники и пособия ВУЗов / Образование и наука
Чудо-оружие СССР. Тайны советского оружия
Чудо-оружие СССР. Тайны советского оружия

В XX веке в нашей стране в обстановке строжайшей секретности были созданы уникальные системы вооружения, действие которых иной раз более впечатляло, чем фантастические романы того времени. О некоторых из них и пойдет речь в этой книге. Автор не счел нужным что-либо преувеличивать или недоговаривать. В книге объективно представлены все достоинства, недостатки и перспективы возможного применения того или иного типа оружия. Читатель узнает, как маршал Тухачевский готовился к «войне роботов», как и почему взлетели на воздух дома на Крещатике в сентябре 1941 г., об испытаниях самолета-невидимки и его связи с Филадельфийским экспериментом, об атомных и ракетных секретах Лаврентия и Серго Берия, о работах по созданию флота из летающих лодок с атомными двигателями, способных доставить термоядерные заряды в любую точку земного шара, и о многом другом.

Александр Борисович Широкорад

История / Технические науки / Образование и наука
Схватка гигантов
Схватка гигантов

Аннотация издательства : Первый том сериала "Морские битвы Первой мировой" посвящен великому противостоянию английского и немецкого линейных флотов, завершившемуся грандиозным Ютландским боем. Это сражение стало кульминацией невидимой борьбы Джона Арбетнота Фишера и Альфреда фон Тирпица – создателей Гранд Флита и Флота Открытого Моря – и адмиралов Джеллико, Битти, Шеера и Хиппера – их командующих. В книге подробно рассмотрены боевые действия крейсерских эскадр и линейных крейсеров, сражения в Северном море и, наконец, те несколько часов 31 мая 1916 года, когда исполинские флоты встретились в открытом бою.Книга снабжена большим справочным аппаратом и станет настоящим подарком для всех любителей военной истории.

Александр Геннадьевич Больных

Документальная литература / История / Технические науки / Образование и наука