Читаем Теория струн и скрытые измерения Вселенной полностью

В качестве примера рассмотрим сферу, помещенную внутрь эллипсоида – поверхности, имеющей форму дыни, – так, что их центры совпадают. Лучи, проведенные из их общего центра во всех возможных направлениях, соединят точки на сфере с точками на эллипсоиде. Подобная операция может быть проделана для любой точки эллипсоида или сферы. Отображение в данном случае не только является непрерывным и однозначным, но оно также не нарушает гладкости отображаемой поверхности. Функция, связывающая две эти поверхности, также не имеет никаких особенностей – это просто прямая линия без зигзагов, резких поворотов и вообще чего-либо необычного. Таким образом, два рассматриваемых объекта – сферу и эллипсоид – можно назвать как гомеоморфными, так и диффеоморфными.

Рис. 3.12.Геометр Саймон Дональдсон

Противоположным примером является так называемая экзотическая сфера. Экзотической сферой называется гладкое во всех точках семимерное многообразие, которое, тем не менее, невозможно без нарушения гладкости преобразовать в обычную круглую семимерную сферу даже при соблюдении условия непрерывности преобразования. Таким образом, подобные поверхности являются гомеоморфными, но не диффеоморфными. Джон Мильнор, уже упоминавшийся в данной главе, получил медаль Филдса во многом благодаря установлению им факта существования экзотических пространств. До открытия Мильнора многие сомневались в существовании таких пространств, поэтому их и назвали экзотическими.

Плоское евклидово пространство для случая двух измерений является простейшим из всех пространств, которые можно себе представить, – это плоская поверхность, подобная крышке стола, которая простирается бесконечно во всех возможных направлениях. На вопрос, будет ли двухмерный диск, множество точек которого является подмножеством точек плоскости, гомеоморфным и диффеоморфным данной плоскости, можно ответить – да, будет. Можно представить себе толпу людей, стоящих на плоскости, каждый из которых берет в руку краешек диска и идет с ним в направлении от центра диска. Как только они достигнут бесконечности, диск точно, непрерывно и однозначно совпадет с плоскостью. Таким образом, эти объекты идентичны с точки зрения тополога. Очевидно и то, что подобный процесс растягивания диска в радиальном направлении можно проделать без нарушения его гладкости.

Все вышесказанное сохраняет свою силу для трех и любого другого числа измерений за исключением случая четырех. В четырехмерном пространстве многообразия могут быть гомеоморфны плоскости или плоскому евклидовому пространству, не будучи при этом диффеоморфны ему. По сути, существует бесконечное множество четырехмерных многообразий, гомеоморфных, но не диффеоморфных четырехмерному евклидовому пространству, носящих общее название R 4(R – от «real» – означает, что элементами пространства являются действительныечисла, в противоположность комплексномучетырехмерному пространству).

Четырехмерное пространство преподносит нам множество особенностей и загадок. Так, к примеру, в пространственно-временном континууме, содержащем 3+1 измерение (три пространственных и одно временное), по словам Дональдсона, «электрическое и магнитное поля будут идентичны». «Но для другого числа измерений с геометрической точки зрения это будут два совершенно разных объекта. Одно из них представляет собой тензор и описывается при помощи матрицы, тогда как другое – вектор, и сравнивать их невозможно. Только в четырех измерениях и то и другое поле будет описываться векторами. Симметрия, имеющая место в данном случае, для иного числа измерений будет отсутствовать».[37]

Дональдсона, по его словам, восхищает тот факт, что с фундаментальной точки зрения невозможно точно указать, что именно выделяет случай четырех измерений среди всех остальных. До того как вышла его работа, о «гладкой эквивалентности» (диффеоморфизме) не было известно практически ничего, хотя благодаря математику Майклу Фриману (ранее работавшему в Калифорнийском университете, Сан-Диего) уже существовали определенные наработки в области топологической эквивалентности (гомеоморфизма). В свою очередь Фриман классифицировал четырехмерные многообразия с топологической точки зрения, основываясь на более ранней работе Эндрю Кассона, в настоящее время работающего в Йельском университете.

Дональдсон привнес в топологию целый ряд свежих идей, использование которых на практике позволило решить сложнейшую задачу классификации гладких (диффеоморфных) четырехмерных многообразий, открыв, фигурально выражаясь, закрытую прежде дверь. До него подобные многообразия были темным лесом. И хотя четырехмерные многообразия еще содержат в себе много загадок, по крайней мере, вопрос, с чего начинать их исследование, уже не стоит. При этом, однако, метод Дональдсона оказался чрезвычайно труден для практического применения. «Мы работали как лошади, пытаясь этим путем извлечь хоть какую-то информацию!» – рассказал гарвардский геометр Клиффорд Таубс.[38]

Перейти на страницу:

Похожие книги

История инженерной деятельности
История инженерной деятельности

В. В. Морозов, В. И. НиколаенкоИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИМинистерство образования и науки УкраиныНациональный технический университет«Харьковский политехнический институт»Курс лекций для студентов всех специальностей дневного и заочного обученияУТВЕРЖДЕНО редакционно-издательским советом университетаХарьков 2007В учебном пособии анализируется содержание инженерной деятельности, рассматривается развитие с древнейших времен для нашего времени.Пособие предназначено для студентов дневной и заочной форм обучения, а также всех, кто интересуется историей развития техники.Історія інженерної діяльності.Курс лекцій для студентів усіх спеціальностей денного та заочного форм навчання – В.В.Морозов, В.І.Ніколаєнко – Харків: НТУ "ХПІ", 2007. – 336 с. – Рос.мовою.В учбовому посібнику аналізується зміст інженерної діяльності, розглядається розвиток техніки з найдавніших часів до сучасності.Посібник призначено для студентів денної та заочної форм навчання, а також для усіх, хто цікавиться історією розвитку техніки.© В.В.Морозов, В.І.Ніколаєнко, 2007 р.

В. В. Морозов , В. И. Николаенко , Виталий Иванович Николаенко , Михаил Давыдович Аптекарь , Султан Курбанович Рамазанов

Технические науки / Учебники и пособия ВУЗов / Образование и наука
Чудо-оружие СССР. Тайны советского оружия
Чудо-оружие СССР. Тайны советского оружия

В XX веке в нашей стране в обстановке строжайшей секретности были созданы уникальные системы вооружения, действие которых иной раз более впечатляло, чем фантастические романы того времени. О некоторых из них и пойдет речь в этой книге. Автор не счел нужным что-либо преувеличивать или недоговаривать. В книге объективно представлены все достоинства, недостатки и перспективы возможного применения того или иного типа оружия. Читатель узнает, как маршал Тухачевский готовился к «войне роботов», как и почему взлетели на воздух дома на Крещатике в сентябре 1941 г., об испытаниях самолета-невидимки и его связи с Филадельфийским экспериментом, об атомных и ракетных секретах Лаврентия и Серго Берия, о работах по созданию флота из летающих лодок с атомными двигателями, способных доставить термоядерные заряды в любую точку земного шара, и о многом другом.

Александр Борисович Широкорад

История / Технические науки / Образование и наука