Читаем Теория струн и скрытые измерения Вселенной полностью

Тензор кривизны Риччи, являющийся ключевым составляющим известного уравнения Эйнштейна, характеризует влияние материи и энергии на геометрию пространства-времени. По сути дела, левая часть этого уравнения представляет собой так называемый тензор Эйнштейна – модифицированный тензор Риччи, тогда как в правой части находится тензор энергии-импульса, описывающий плотность и поток материи в пространстве-времени. Иными словами, уравнение Эйнштейна связывает поток плотности материи и импульс в данной точке пространственно-временного континуума с тензором Риччи. Поскольку тензор кривизны Риччи является только частью общего тензора кривизны, как уже говорилось выше, невозможно определить кривизну в целом только на основании этого тензора. Надежду на определение кривизны пространства-времени дает нам знание глобальной топологии.

В частном случае, когда масса и энергия равны нулю, уравнение сводится к следующему: тензор Эйнштейна = 0. Это так называемое уравнение Эйнштейна для вакуума, и хотя на первый взгляд оно может показаться простым, не следует забывать, что это уравнение является нелинейным дифференциальным уравнением в частных производных, которые почти никогда не решаются просто. Более того, уравнение Эйнштейна для вакуума на самом деле представляет собой систему из десяти нелинейных дифференциальных уравнений в частных производных, поскольку тензор состоит из десяти независимых коэффициентов. Это уравнение очень похоже на гипотезу Калаби, которая предполагает равенство нулю кривизны Риччи. Нет ничего особо удивительного в том, что оно имеет так называемое тривиальноерешение, которое не представляет никакого интереса: пространственно-временной континуум, в котором нет ни материи, ни гравитации и в котором в принципе ничего не происходит. Однако существует и более интригующая возможность и именно о ней идет речь в гипотезе Калаби: может ли уравнение Эйнштейна для вакуума также иметь и нетривиальноерешение? И ответ на этот вопрос, как мы увидим в свое время, утвердительный.

Вскоре после того, как Черн в середине 1940-х годов сформулировал понятие классов Черна, он показал, что для многообразий с кривизной Риччи, равной нулю, то есть для многообразий определенной геометрии, первый класс Черна также должен обращаться в нуль. Калаби представил проблему в другом виде, задавшись вопросом, насколько топологические особенности пространства определяют его геометрию или, точнее, позволяют пространству иметь ту или иную геометрию. Обратное верно далеко не всегда. К примеру, известно, что гладкая поверхность, то есть не имеющая углов, гауссова кривизна которой больше единицы, должна быть ограниченной или компактной. Она не может простираться до бесконечности. Но в общем случае компактные гладкие поверхности не обязательно имеют метрику с гауссовой кривизной больше единицы.

Например, бублик является совершенно гладким и компактным, однако его гауссова кривизна далеко не везде положительна, не говоря уже о том, что она далеко не всегда больше единицы. На самом деле, как уже обсуждалось ранее, метрика с гауссовой кривизной, равной нулю, вполне возможна, а метрика, кривизна которой всюду положительна, – нет.

Таким образом, гипотеза Калаби столкнулась с двумя большими затруднениями: из того, что эта гипотеза представляла собой утверждение, обратное общеизвестному факту, еще не следовала ее истинность. И даже при условии ее истинности, доказать существование метрики, удовлетворяющей всем необходимым требованиям, чрезвычайно сложно. Подобно гипотезе Пуанкаре, появившейся ранее, гипотезу Калаби, точнее важный частный случай этой гипотезы, можно сформулировать одним предложением: «Компактное кэлерово многообразие, в котором первый класс Черна обращается в нуль, может иметь риччи-плоскую метрику». Однако для доказательства этого простого утверждения потребовалось более двух десятилетий. Ну а работа над всеми возможными следствиями из данного утверждения продолжается уже несколько десятилетий после его доказательства.

Как заметил Калаби: «Я изучал кэлерову геометрию и понял, что пространство, которое может иметь по крайней мере одну кэлерову метрику, может также иметь и другие кэлеровы метрики. Найдя одну из них, не составит труда найти и прочие. Моей целью было нахождение такой метрики, которая была бы лучше всех остальных – более “округлая”, если так можно выразиться, – та, которая дает больше всего информации и сглаживает все неровности многообразия». Таким образом, гипотеза Калаби, по его словам, посвящена тому, как найти «лучшую» метрику.[43]

Можно выразить это словами Грина: «Мы пытаемся найти ту единственную метрику, которую дал нам Бог».[44]

Перейти на страницу:

Похожие книги

История инженерной деятельности
История инженерной деятельности

В. В. Морозов, В. И. НиколаенкоИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИМинистерство образования и науки УкраиныНациональный технический университет«Харьковский политехнический институт»Курс лекций для студентов всех специальностей дневного и заочного обученияУТВЕРЖДЕНО редакционно-издательским советом университетаХарьков 2007В учебном пособии анализируется содержание инженерной деятельности, рассматривается развитие с древнейших времен для нашего времени.Пособие предназначено для студентов дневной и заочной форм обучения, а также всех, кто интересуется историей развития техники.Історія інженерної діяльності.Курс лекцій для студентів усіх спеціальностей денного та заочного форм навчання – В.В.Морозов, В.І.Ніколаєнко – Харків: НТУ "ХПІ", 2007. – 336 с. – Рос.мовою.В учбовому посібнику аналізується зміст інженерної діяльності, розглядається розвиток техніки з найдавніших часів до сучасності.Посібник призначено для студентів денної та заочної форм навчання, а також для усіх, хто цікавиться історією розвитку техніки.© В.В.Морозов, В.І.Ніколаєнко, 2007 р.

В. В. Морозов , В. И. Николаенко , Виталий Иванович Николаенко , Михаил Давыдович Аптекарь , Султан Курбанович Рамазанов

Технические науки / Учебники и пособия ВУЗов / Образование и наука
Чудо-оружие СССР. Тайны советского оружия
Чудо-оружие СССР. Тайны советского оружия

В XX веке в нашей стране в обстановке строжайшей секретности были созданы уникальные системы вооружения, действие которых иной раз более впечатляло, чем фантастические романы того времени. О некоторых из них и пойдет речь в этой книге. Автор не счел нужным что-либо преувеличивать или недоговаривать. В книге объективно представлены все достоинства, недостатки и перспективы возможного применения того или иного типа оружия. Читатель узнает, как маршал Тухачевский готовился к «войне роботов», как и почему взлетели на воздух дома на Крещатике в сентябре 1941 г., об испытаниях самолета-невидимки и его связи с Филадельфийским экспериментом, об атомных и ракетных секретах Лаврентия и Серго Берия, о работах по созданию флота из летающих лодок с атомными двигателями, способных доставить термоядерные заряды в любую точку земного шара, и о многом другом.

Александр Борисович Широкорад

История / Технические науки / Образование и наука
Схватка гигантов
Схватка гигантов

Аннотация издательства : Первый том сериала "Морские битвы Первой мировой" посвящен великому противостоянию английского и немецкого линейных флотов, завершившемуся грандиозным Ютландским боем. Это сражение стало кульминацией невидимой борьбы Джона Арбетнота Фишера и Альфреда фон Тирпица – создателей Гранд Флита и Флота Открытого Моря – и адмиралов Джеллико, Битти, Шеера и Хиппера – их командующих. В книге подробно рассмотрены боевые действия крейсерских эскадр и линейных крейсеров, сражения в Северном море и, наконец, те несколько часов 31 мая 1916 года, когда исполинские флоты встретились в открытом бою.Книга снабжена большим справочным аппаратом и станет настоящим подарком для всех любителей военной истории.

Александр Геннадьевич Больных

Документальная литература / История / Технические науки / Образование и наука