Читаем Теория струн и скрытые измерения Вселенной полностью

Впрочем, говорят, что нельзя судить о пудинге до тех пор, пока его не попробуешь, – даже если что-то имеет привлекательный вид, окончательный вывод можно сделать только после тщательной проверки. Я не мог слепо полагаться на удачу. Однажды я уже поставил себя в неловкое положение, публично заявив на стэнфордской конференции 1973 года, будто знаю, как опровергнуть гипотезу Калаби. Тогда мое предполагаемое опровержение провалилось, и если бы теперь точно так же провалилось и мое подтверждение гипотезы Калаби, моя репутация как математика оказалась бы под большим вопросом. Я точно знал, что на данном этапе своей карьеры – мне тогда еще не исполнилось тридцати – я не могу позволить себе ошибиться вновь, по крайней мере, в столь важном деле.

Поэтому я проверял и перепроверял свое доказательство, рассмотрев его четыре раза с четырех совершенно разных позиций. Я проверял его столько раз, что поклялся, что если я окажусь неправ, то брошу математику. Но все мои попытки найти огрехи в доказательстве оказались тщетными. Насколько я мог судить, в нем все было идеально. Поскольку в те времена еще не существовало Интернета, где я мог бы просто опубликовать черновик своей статьи и попросить прокомментировать его, я избрал старомодный путь – выслал копию моего доказательства Калаби и отправился в Филадельфию для дальнейшей дискуссии с ним самим и другими геометрами с математического факультета Пенсильванского университета, в том числе и с Джерри Кадзаном.

Калаби счел мое доказательство безупречным, но мы договорились встретиться с Ниренбергом и проработать его вместе шаг за шагом. Так как найти время, когда мы все трое были бы свободны, было весьма непросто, наша встреча пришлась на Рождество 1976 года – единственный день, в который никто из нас не имел неотложных дел. На этой встрече нам так и не удалось найти в доказательстве ни одной ошибки – впрочем, чтобы окончательно удостовериться в правильности доказательства, требовалось намного больше времени. «На первый взгляд оно выглядит весьма правдоподобно, – вспоминал Калаби. – Но чрезвычайная сложность этого доказательства требует еще порядка месяца для более детальной проверки».[53]

По окончании срока, отпущенного на рецензирование, Калаби и Ниренберг выразили свое полное согласие с моим доказательством. С этого момента гипотезу Калаби можно было объявить доказанной, и за прошедшие с того времени тридцать с лишним лет никто так и не смог поколебать это утверждение. На сегодняшний день доказательство гипотезы Калаби выдержало столько проверок, проведенных столь значительным числом ученых, что едва ли можно ожидать обнаружения в нем существенных ошибок в дальнейшем.

Итак, что же мне удалось сделать? Доказательством гипотезы Калаби я еще раз укрепил свое убеждение о том, что важнейшие математические проблемы могут быть разрешены путем объединения геометрии с дифференциальными уравнениями в частных производных. Более конкретно, я доказал существование риччи-плоской метрики для компактных кэлеровых пространств, первый класс Черна для которых обращается в нуль, хотя я и не смог написать точную формулу, определяющую метрику саму по себе. Все, что я мог сказать, – это то, что подобная метрика существовала, но точный ее вид так и остался мне неизвестным.

Хотя это может прозвучать несколько неожиданно, метрика, существование которой я доказал, обладала почти сверхъестественными свойствами. В качестве постскриптума к своему доказательству я показал возможность существования множества фантастических многомерных пространств, известных сейчас как пространства Калаби-Яу, которые удовлетворяли уравнениям Эйнштейна в случае отсутствия в них материи. Таким образом, я обнаружил не просто решение, а самый многочисленный из известных класс решений уравнений Эйнштейна.

Кроме того, мне удалось показать, что непрерывно изменяя топологию, можно получить бесконечный класс решений основного уравнения, входящего в гипотезу Калаби, в настоящее время известного как уравнение Калаби-Яу и являющегося частным случаем уравнения Эйнштейна. Решения этого уравнения представляли собой топологические пространства, и сила доказательства состояла в его общности. Иными словами, я доказал существование не только одного примера подобных пространств или частного случая, а целого класса примеров. Более того, я показал, что для определенной топологии – например, для комплексных подмногообразий, находящихся внутри более крупных многообразий, – существует только одно возможное решение.

Перейти на страницу:

Похожие книги

История инженерной деятельности
История инженерной деятельности

В. В. Морозов, В. И. НиколаенкоИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИМинистерство образования и науки УкраиныНациональный технический университет«Харьковский политехнический институт»Курс лекций для студентов всех специальностей дневного и заочного обученияУТВЕРЖДЕНО редакционно-издательским советом университетаХарьков 2007В учебном пособии анализируется содержание инженерной деятельности, рассматривается развитие с древнейших времен для нашего времени.Пособие предназначено для студентов дневной и заочной форм обучения, а также всех, кто интересуется историей развития техники.Історія інженерної діяльності.Курс лекцій для студентів усіх спеціальностей денного та заочного форм навчання – В.В.Морозов, В.І.Ніколаєнко – Харків: НТУ "ХПІ", 2007. – 336 с. – Рос.мовою.В учбовому посібнику аналізується зміст інженерної діяльності, розглядається розвиток техніки з найдавніших часів до сучасності.Посібник призначено для студентів денної та заочної форм навчання, а також для усіх, хто цікавиться історією розвитку техніки.© В.В.Морозов, В.І.Ніколаєнко, 2007 р.

В. В. Морозов , В. И. Николаенко , Виталий Иванович Николаенко , Михаил Давыдович Аптекарь , Султан Курбанович Рамазанов

Технические науки / Учебники и пособия ВУЗов / Образование и наука
Чудо-оружие СССР. Тайны советского оружия
Чудо-оружие СССР. Тайны советского оружия

В XX веке в нашей стране в обстановке строжайшей секретности были созданы уникальные системы вооружения, действие которых иной раз более впечатляло, чем фантастические романы того времени. О некоторых из них и пойдет речь в этой книге. Автор не счел нужным что-либо преувеличивать или недоговаривать. В книге объективно представлены все достоинства, недостатки и перспективы возможного применения того или иного типа оружия. Читатель узнает, как маршал Тухачевский готовился к «войне роботов», как и почему взлетели на воздух дома на Крещатике в сентябре 1941 г., об испытаниях самолета-невидимки и его связи с Филадельфийским экспериментом, об атомных и ракетных секретах Лаврентия и Серго Берия, о работах по созданию флота из летающих лодок с атомными двигателями, способных доставить термоядерные заряды в любую точку земного шара, и о многом другом.

Александр Борисович Широкорад

История / Технические науки / Образование и наука
Схватка гигантов
Схватка гигантов

Аннотация издательства : Первый том сериала "Морские битвы Первой мировой" посвящен великому противостоянию английского и немецкого линейных флотов, завершившемуся грандиозным Ютландским боем. Это сражение стало кульминацией невидимой борьбы Джона Арбетнота Фишера и Альфреда фон Тирпица – создателей Гранд Флита и Флота Открытого Моря – и адмиралов Джеллико, Битти, Шеера и Хиппера – их командующих. В книге подробно рассмотрены боевые действия крейсерских эскадр и линейных крейсеров, сражения в Северном море и, наконец, те несколько часов 31 мая 1916 года, когда исполинские флоты встретились в открытом бою.Книга снабжена большим справочным аппаратом и станет настоящим подарком для всех любителей военной истории.

Александр Геннадьевич Больных

Документальная литература / История / Технические науки / Образование и наука